
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

自律的 In-Network Computingにおける
タスク粒度を考慮した重複スケジューリング

新部 裕樹† 上山 憲昭††

†立命館大学情報理工学研究科
〒567-8570大阪府茨木市岩倉町 2-150

††立命館大学情報理工学部
〒567-8570大阪府茨木市岩倉町 2-150

E-mail: †gr0693pv@ed.ritsumei.ac.jp, ††kamiaki@fc.ritsumei.ac.jp

あらまし ネットワークやコンピューティング技術の進歩によって，IoTデバイスが急速に普及してきている．IoT
デバイスからセンシングされるデータ (IoTBD)にはよりよい社会を実現する上で価値となる情報が含まれており，
これらに対して処理を連携させながら分析していくことが求められている．このような処理の連携を効率よく実現
するために，クラウドだけでなくネットワーク全体で処理を提供する，In-network computingが検討されている．特
に，今後も増大する IoTデバイスをサポートするためには，自律的 In-network computingによって処理の連携する手
法が必要である．しかしながら，このような自律分散型の処理基盤ではタスクの重複割当が発生し，計算資源利用
の効率性に問題が生じる．計算資源を有効に活用するためには，タスクを重複せずに実行することが望ましい．し
かし，実際には追加で計算資源が利用できる状況下において，あえてタスクの重複を許容することによって，アプ
リケーションの実行性能を向上させたい場合がある．この計算資源の利用効率とアプリケーションの実行性能の間
には，トレードオフの関係がある．そこで本稿では，必要最小限のタスクのみを重複実行することで遅延を削減す
る手法を提案する．シミュレータを用いて提案手法の評価を行い，どのような特性を持つかを明らかにする．
キーワード ネットワーク内処理,ワークフロー,タスクスケジューリング.

Grain-Aware Task Duplication Scheduling
for Autonomous In-Network Computing

Yuki NIIBE† and Noriaki KAMIYAMA††

† Graduate School of Information Science and Engineering, Ritsumeikan University
2-150 Iwakura-cho, Ibaraki, Osaka 567-8570, JAPAN

†† College of Information Science and Engineering, Ritsumeikan University
2-150 Iwakura-cho, Ibaraki, Osaka 567-8570, JAPAN

E-mail: †gr0693pv@ed.ritsumei.ac.jp, ††kamiaki@fc.ritsumei.ac.jp

Abstract With advances in network and computing technologies, IoT devices are becoming rapidly widespread. Data sensed
by IoT devices (IoTBD) contains valuable information for realizing a better society, and there is a need to analyze this data while
coordinating processing. To efficiently achieve such collaborative processing, in-network computing is being considered. In par-
ticular, supporting the ever-increasing number of IoT devices requires methods for coordinating processing through autonomous
in-network computing. However, in such an autonomous, distributed processing infrastructure, duplicate task assignments can
occur, leading to inefficiencies in computational resource utilization. To effectively utilize computational resources, it is desirable
to execute tasks without duplication. In practice, however, a trade-off exists between computational resource utilization efficiency
and application execution performance. Therefore, this paper proposes a method to reduce latency by executing only the minimum
necessary tasks in duplicate. We evaluate the proposed method using a simulator to clarify its characteristics.
Key words In-Network Computing, Workflow, Task Scheduling.

— 1 —

1. は じ め に
近年のネットワークおよびコンピューティング技術の飛躍
的な進歩により，あらゆるモノやコトがインターネットを介し
て接続される社会基盤が形成されつつある．特に，高速大容
量・低遅延・多数同時接続を特徴とする 5G/Beyond 5Gの普及
は，これまで以上に多様な IoTデバイスのネットワーク参加を
加速させている．スマートシティ，スマートホーム，ヘルス
ケア，産業オートメーションといった多岐にわたる IoTアプリ
ケーションは，その稼働に伴い膨大なデータを生成する．これ
らは IoT Big Data (IoTBD)と呼ばれ，その量・速度・多様性と
いった特性が従来のデータとは異なるものである [1]．IoTBD
から実用的な価値を創出するためには，セマンティクスによ
る分析処理が不可欠であり，これによって物流最適化やエネ
ルギー管理といった高度な意思決定支援が可能となる [2]．ま
た，IoTBDの活用は，物理空間をサイバー空間上に再現するデ
ジタルツインや Cyber Physical Systemの実現においても重要で
ある [3], [4]．さらに，IoTの概念をモビリティへ拡張した IoV
(Internet of Vehicles)においては，車両や都市インフラから生成
されるデータをリアルタイムに解析し，個々の車両制御のみな
らず都市全体の交通流最適化に役立てることが求められてい
る [5]．そのため，IoTBDのようなエッジに広がる新たなビッ
グデータを活用するためには，様々な処理の連携によってア
プリケーションを実行する基盤が必要である．
しかしながら，エッジ領域に広がる IoTBDを活用するため
の計算基盤には，解決すべき課題が残されている．従来，大
規模データの処理は潤沢なリソースを持つクラウドデータセ
ンタに集約されることが一般的であった．しかし，IoTBDの
爆発的な増加とアプリケーションのリアルタイム性要求の高
まりに伴い，クラウド集約型のアプローチは限界を迎えつつあ
る．これに対し，エッジコンピューティングが提案されてい
るが，センサや車両等のエンドデバイスは計算資源やバッテ
リ容量に制約があり，複雑な処理の実行は困難である [6]．ま
た，単にエッジサーバを配置するだけでは，動的なトラヒック
変動への追従や全体最適化としては不十分である．
これらの課題を解決する新たな手法として，In-network com-

puting (INC)が注目されている．INCは，ネットワークデバイ
スに計算能力を持たせ，データ転送経路上で処理を行う手法で
ある [7]．これにより，不要なデータ転送を抑制し，エッジコ
ンピューティングよりも高いスループットと，クラウドより
も低い遅延を同時に実現することが可能となる．しかし，既
存の INC研究の多くは，限定された範囲のデバイスを中央集
権的に管理することを前提としている．2030年には IoTデバ
イス数が現在の 10倍以上に達すると予測される中で [8]，広範
囲に分散する膨大なデバイスと計算リソースを中央集権的に
制御することは，スケーラビリティの観点から現実的ではな
い．したがって，ネットワーク上のノードが自律的に連携し，
アプリケーションを実行する，自律的な In-Network Computing
の実現が求められる．
本稿では，この自律的な分散処理基盤を実現するアプロー

チとして，情報指向ネットワーク (ICN: Information-Centric Net-
working)と Service Function Chaining (SFC)を統合した手法であ
る，ICN-SFCに着目する [9], [10]．従来の IPベースの SFCで
は，計算リソースの場所と識別子が密結合しており，SDNコ
ントローラ等による集中的な管理が必要であった．これに対

し ICN-SFCでは，ユーザは目的のアプリケーションを名前で
指定するだけでよく，ネットワークが自律的に最適な機能やコ
ンテンツを発見・ルーティング・実行することが可能である．
また，ネットワーク状態やリソース負荷に応じた動的な制御
も統合的に実現できる．以上のことから，IoTBDにおいてス
ケーラブルかつ低遅延な INCを実現するためには，ICN-SFC
が構造的に適しており有用である．
昨今の IoTアプリケーションの高度化・複雑化 [11]を踏まえ

ると，INCの実現には，単純な直列状のサービスチェインだけ
でなく，依存関係が分岐・合流する有向非巡回グラフ (DAG)
構造への対応が不可欠である [10]．しかし，自律的なノード連
携によって DAGアプリケーションを実行する場合，タスクの
重複実行という課題が生じる．ICN-SFCでは通常，最終タス
クから開始タスクへ向けて逆順に要求を送信し，実行ノード
を確定させた後に順方向へ処理を進める．この際，DAG構造
においては一つのタスクが複数の後続タスクから要求される
状況が発生する．自律分散環境では大域的な調整や同期が困
難であるため，各ノードが自身の経路表 (FIB)に従い異なる経
路で要求を転送した結果，同一タスクが複数のノードで重複
してスケジューリングされる可能性がある．
図 1に，これにより引き起こされるタスクの重複実行の様

子を示す．この無制限な重複実行は，計算資源の浪費に繋が
る．私達はこれまで，計算資源の有効活用の観点から，このタ
スクの重複を完全に排除するスケジューリング手法を検討し
てきた [12]．しかし，重複の排除はリソース節約に寄与する一
方で，必ずしもアプリケーションの実行時間短縮にはつなが
らない．計算資源に余力がある環境下では，ある程度意図的
に重複実行を許容することで，通信遅延や処理待ち時間の影
響を隠蔽し，実行性能を向上させられる可能性がある．すな
わち，計算資源の消費量とアプリケーションの実行性能の間
にはトレードオフが存在する．
そこで本稿では，DAG構造と各タスクの粒度に着目し，ア

プリケーション全体の実行時間短縮を目的として，投機的にタ
スクを重複実行する手法を提案する．提案手法は，無制限に重
複を許す場合よりも計算資源消費を抑制しつつ，重複を完全
に排除する場合よりも高い実行性能を実現することを目指す．
これにより，資源効率と実行速度のトレードオフにおいてバラ
ンスの取れたタスクスケジューリングを実現する．また，計算
機シミュレーションによる評価を通じ，計算資源消費と実行
性能の関係性における本手法の特性と有効性を明らかにする．

図 1 自律的な In-network computing でタスクが重複する様子

— 2 —

2. 関 連 研 究
2. 1 ICN-SFC
ICNでは IPアドレスといったホストを指定した通信を行う
のではなく，取得したいコンテンツの名称を指定して通信を
行う．そのため，コンテンツを要求する際にコンテンツを保
持するホストのアドレスを取得・解決する必要がない．この
パラダイムは，ICN-SFCにおけるタスクの連携においても適
用できる．つまり，タスクを実行するノードのアドレスを指
定するのではなく，タスクそのものを指定することでタスク
の実行要求をする．

ICN-SFCの中でも DAG構造のアプリケーションを想定した
ものとして，AutoICNが提案されている [10]．AutoICNの実行
フローは，単純な Longest matchによるパケット転送ではなく，
自律的なタスクスケジューリングとして機能する．各ノード
は Interest を受け取ると，DAG 全体の実行完了時間を最小化
するための判断を行う．これは，タスクを自身で実行するべ
きか，あるいは他の適切なノードへ転送するかの決定である．
具体的には，タスクの実行完了予測時間やデータ転送時間に
基づいて 𝑏𝑙𝑒𝑣𝑒𝑙 (bottom level)と呼ばれる指標を計算し，ネッ
トワークの動的な状況に応じた最適なタスク割り当てを行う．
これは，通常の SFCが計算リソースへのルーティングに主眼
を置いているのに対し，AutoICNはタスク間の依存関係と計
算資源の配分を考慮した「スケジューリング」を ICNの転送
プレーン上で自律的に行う点に特徴がある．つまり，AutoICN
でも他の SFC同様に，既に配置済みのタスクへのルーティン
グを行うが，その途中で実行場所として実行完了時刻短縮に
最適な計算資源が見つかった場合，そこに新たにタスクを割
り当て，実行場所として決定する．AutoICNでは，実行時間短
縮に貢献できるノード全てが実行場所になり得る．

AutoICNは単一の Interestフローに対しては効率的な割り当
てを行うことができるが，DAG構造を持つアプリケーション
においては，タスクの重複割り当てという重大な課題が存在す
る．DAG構造のアプリケーションでは，先行タスクの処理結
果が，分岐した複数の後続タスクによって必要とされるケー
スが発生する．これを，Fork構造と言う．タスク割り当てが
進行し，後続タスク群がそれぞれノード Aとノード Bという
異なるノードに分散して配置された場合を考える．このとき，
各後続タスクは，自身の実行に必要な共通の先行タスクに対し
て，個別に実行要求を送信することになる．AutoICNのような
自律分散環境では，各ノードは自身のローカルな FIBとネット
ワーク状況に基づいて独立してルーティングを行う．そのた
め，ノード Aから送信された先行タスクへの要求と，ノード
Bから送信された要求が，それぞれ異なる経路を通り，最終的
に別々の計算ノードに到達してしまう可能性がある．このよ
うに，同一タスクに対する実行要求であるにもかかわらず，要
求元の違いやネットワーク上の経路選択の結果として，別々の
ノードで処理が開始されてしまう現象が発生する．我々はこ
の問題を，DAGの分岐したフロー (Fork)が正しく合流 (Join)で
きず，処理が拡散してしまう様子になぞらえて，Fork Not-Join
(FNJ)問題と呼ぶ．FNJ問題が発生すると，本来一度だけ実行
されればよいはずのタスクが，ネットワーク内の複数箇所で重
複して実行されることになる．これにより，計算資源の浪費に
よるネットワークの圧迫や効率の低下といった問題が生じる．
私達のこれまでの取り組みでは，タスクを重複実行がない形

でスケジューリングするため，DAGをトポロジカルソートに
よって一直線に並び替えた上で必ず１つずつ実行要求してい
くことで，FNJ問題を解決した [12]．トポロジカルソートの例
を図 2に示す．しかしながら，AutoICNのような自律的な環
境において，１回のルーティングで良好な実行性能を得られ
るノードへたどり着ける可能性は高くない．加えて，DAGを
一直線に並び替え，一筆書きのようにタスクをスケジュール
していく都合上，処理結果の返送経路長が長くなってしまう．
このような理由から，従来手法の無制限な重複を許容する手
法と比較すると，大幅に実行性能が劣化してしまった．
これらのことを言い換えると，重複実行によってタスクを

複数回要求することで良好な実行性能が得られる可能性を高
め，実行時間を短縮することが考えられる．加えて，重複要
求時には一筆書きのようにタスクをスケジュールしていくフ
ローから離脱して新たな要求を始める形になるため，より短
い返送経路長でそのタスクから先を実行できる．このことか
ら，タスクの重複実行によって様々な場所へ要求することは，
実行性能の向上を期待して投機的にタスクを重複すると捉え
ると，良い面もある．
無秩序なタスクの重複実行では，アプリケーション全体の実

行時間短縮に寄与しないタスクまでもが重複実行され，計算
資源が無駄に消費されてしまう．そのため，重複実行によっ
て実行時間を短縮する場合には，アプリケーション全体の実
行時間短縮に影響度の高い，ボトルネックとなっているタス
クに限って重複するのがよい．そこで本稿では，重複対象の
タスクと重複実行回数の両方を効果のある範囲に限定して重
複スケジュールすることで，実行性能の向上を狙いつつ，消費
する計算資源の量を抑える手法を提案する．

図 2 トポロジカルソートによる重複排除の例

3. 提 案 手 法
タスクを実行時間の短縮を期待して投機的に実行すること

は有効であるが，無制限な重複はネットワークを圧迫し，不
必要な計算資源消費から効率を低下させる．そこで本節では，
ICN-SFCにおいて重複対象のタスクと最大重複回数を限定し
てタスクを重複することで，消費する計算量を抑えつつアプ
リケーション全体の実行時間を短縮させる方法を提案する．
具体的には，DAG の静的解析に基づく重複のための「予算
(Budget)」の決定と，経路上の動的統計情報に基づくタスクの
「粒度 (Grain)」を用いて，適応的な重複実行の判断を目指すも
のである．本手法は，2段階の制御を行う．Phase1が DAGの

— 3 —

静的解析と予算配分，Phase2が動的情報での重み付けと重複
判断である．つまり，Phase1が静的な情報を扱い，Phase2が
動的な情報を扱う．次節からは，それぞれのフェーズに分か
れて提案手法の詳細を説明する．

3. 1 Phase1: 静的解析と予算配分
Phase1では DAGを静的に解析し，全体の実行時間短縮のた
めに重複対象とすべきタスクと，その重複数を決定する．ま
ず，アプリケーションの DAG 𝐺 = (𝑉, 𝐸) に対して静的解析を
行う．全体の処理時間を最小化するため，重複の対象は DAG
のクリティカルパス 𝐶𝑃 ⊆ 𝑉 上のタスクに限定する．クリティ
カルパスはアプリケーション全体の実行時間を決定するため，
クリティカルパス上のタスクの実行時間が短縮されると，全
体の実行時間も短縮される可能性が高い．そのため，ここで
はクリティカルパス上のタスクをボトルネックタスクと見な
し，重複対象とする．
次に，無制限な重複を防ぐための，アプリケーション全体
での最大の重複実行回数を決定する．不必要な量の重複を避
けつつ並列性を最大化することで重複実行の効果を得るため，
Brentの定理に基づく理想的な並列度を総予算 𝐵𝑡𝑜𝑡𝑎𝑙 の基準と
する．アプリケーション内の総計算量𝑊 とクリティカルパス
上の総計算量 𝐿 を用いて，以下のように定義する。

𝐵𝑡𝑜𝑡𝑎𝑙 =
𝑊

𝐿

Brentの定理は，Work stealingという手法においてタスクスケ
ジューリングの分野に適用されている [13]．Work stealingは，
暇なプロセッサが忙しいプロセッサからタスクを盗み (重複し)
実行するというものである．ここで，アプリケーションの並
列度が理想的な並列度𝑊/𝐿に近い場合，タスクを盗む動作が
ランダムに行われたとしても，最適に近いスケジュールが得
られるとしている．ここで，本提案手法で考えている投機的
なタスクの重複は，Work stealingを push型で逆に行っている
ものと言える．そのため，本手法においても最大の重複数を
理想的な並列度𝑊/𝐿に限定することで，重複の効果を得つつ
必要以上に計算資源を消費することを抑えられると考える．
最後に，決定された重複予算 𝐵𝑡𝑜𝑡𝑎𝑙 を各重複対象タスクに割
り振る．ここで予算の割り振りを効果的に行うため，各重複対
象タスク 𝑣𝑥 ∈ 𝐶𝑃の静的粒度 𝑔𝑠𝑡𝑎𝑡𝑖𝑐 (𝑣𝑥)を算出する．粒度算出
のための各タスクの関係性を，図 3に示す．粒度は計算コスト
𝑤(𝑣𝑥) と通信データ量 𝑑 (𝑣𝑥) の比率であり，タスク 𝑣𝑥 の Fork
set 𝐹𝑥 = 𝑣1, 𝑣2, ..., 𝑣𝑚の粒度 𝑔(𝐽𝑥)と Joint set 𝐽𝑥 = 𝑣1, 𝑣2, ..., 𝑣𝑚の
粒度 𝑔(𝐹𝑥) を用いて，以下の式で算出される [14]．

𝑔(𝐽𝑥) =
min
𝑘=1:𝑚

𝐷 𝑝 (𝑣𝑥 , 𝛼𝐸𝑁𝐷)

max
𝑘=1:𝑚

𝐷𝑐 (𝑑𝑘,𝑥 , 𝐿𝐸𝑁𝐷)

𝑔(𝐹𝑥) =
min
𝑘=1:𝑚

𝐷 𝑝 (𝑣𝑥 , 𝛼𝐸𝑁𝐷)

max
𝑘=1:𝑚

𝐷𝑐 (𝑑𝑥,𝑘 , 𝐿𝐸𝑁𝐷)

𝑔𝑠𝑡𝑎𝑡𝑖𝑐 (𝑣𝑥) = min 𝑔(𝐹𝑥), 𝑔(𝐽𝑥)

ここで， 𝐷 𝑝 (𝑣𝑥 , 𝛼𝐸𝑁𝐷) はタスク 𝑣𝑥 の処理能力 𝛼𝐸𝑁𝐷 での処
理時間，𝐷𝑐 (𝑑𝑥,𝑘 , 𝐿𝐸𝑁𝐷)は依存関係 𝑑𝑥,𝑘 の帯域幅 𝐿𝐸𝑁𝐷 での
通信時間である．このフェーズでは静的な解析を行っている
ため，処理能力や帯域幅といった指標の動的な値は入手でき
ない．そのため，この静的解析を行う，要求送信ノードの値を
代表値としてそれぞれ 𝛼𝐸𝑁𝐷 と 𝐿𝐸𝑁𝐷 に代入し，算出を行う．

𝑔𝑠𝑡𝑎𝑡𝑖𝑐 (𝑣𝑥)が大きいタスクは、計算に対して通信コストが相対
的に小さいため，重複によるネットワーク負荷のペナルティ
が低い．つまり，重複によって遠隔のノードにスケジュール
した場合にも，通信ペナルティの影響を受けずに早く処理結
果を返送できる可能性がある．よって，𝑔𝑠𝑡𝑎𝑡𝑖𝑐 (𝑣𝑥)が小さいタ
スク 𝑣𝑥 は，重複による実行時間短縮の成功可能性が高いと言
える．したがって，本手法では 𝐶𝑃上のタスクを 𝑔𝑠𝑡𝑎𝑡𝑖𝑐 (𝑣) の
降順にソートし，上位のタスクに対して優先的に Budgetを配
分する．分配方法は，予算 𝐵𝑡𝑜𝑡𝑎𝑙 を線形に分割する形とする．
以上を持って，Phase1での DAGの静的解析を終了し，実行要
求の転送を開始する．

3. 2 Phase2: 動的情報での重み付けと重複判断
Phase2では，実行要求を受け取った各ノードが，Phase1で

の静的解析の結果割り振られた予算を用いて，動的情報を加
味した重複判断を行う．初めに，現在要求が回ってきたタス
ク，即ち割り当てようとしているタスクが，クリティカルパス
上に存在し，重複対象となっているかを判断する．もし重複
対象でない場合には，重複割当を行わず，これまでの手法と同
様に重複を排除するような一筆書きの割当を続ける．もし重
複対象である場合には，動的な情報を用いた重複判断に移る．
ノードは要求パケットを受信した際、ヘッダに記録された

経路統計情報を用いて、動的粒度 𝑔𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝑣𝑥) を算出する．

𝑔(𝐽𝑥) =
min
𝑘=1:𝑚

𝐷 𝑝 (𝑣𝑥 , 𝛼𝑎𝑣𝑔)

max
𝑘=1:𝑚

𝐷𝑐 (𝑑𝑘,𝑥 , 𝐿𝑎𝑣𝑔)

𝑔(𝐹𝑥) =
min
𝑘=1:𝑚

𝐷 𝑝 (𝑣𝑥 , 𝛼𝑎𝑣𝑔)

max
𝑘=1:𝑚

𝐷𝑐 (𝑑𝑥,𝑘 , 𝐿𝑎𝑣𝑔)

𝑔𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝑣𝑥) = min 𝑔(𝐹𝑥), 𝑔(𝐽𝑥)

ここで 𝑔𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝑣𝑥) を算出するための平均処理能力 𝛼𝑎𝑣𝑔 と平
均帯域幅 𝐿𝑎𝑣𝑔は，経路統計情報から以下のように算出できる．

𝐿𝑎𝑣𝑔 =

∑ |𝑃 (𝑝𝑖) |
𝑖=0 𝐿𝑖,𝑖+1

|𝑃(𝑝𝑖) | − 1

𝛼𝑎𝑣𝑔 =

∑ |𝑃 (𝑝𝑖) |
𝑖=0 𝛼𝑖

|𝑃(𝑝𝑖) |

ここで，𝑃(𝑝𝑖) は要求パケット 𝑝𝑖 が通ってきた経路 𝑃(𝑝𝑖) =
(𝑛0 = 𝐴(𝑣𝐸𝑁𝐷), 𝑛1, 𝑛2, ..., 𝑛𝑛)を表しており，これまで経由して
きた経路上の統計情報に対して平均値を算出する．各経由情
報は Interestパケットヘッダ内の Application Parametersフィー
ルドに格納されり．この挙動により，In-band network telemetry
に似た挙動と情報を ICN-SFCでも実現できる．静的解析では
初期値として静的解析を実行したノードの値を代表値として，
通信環境を仮定していたが，実際のネットワークでは混雑状
況により有効帯域が変化する．本手法では，この 𝑔𝑑𝑦𝑛𝑎𝑚𝑖𝑐 (𝑣𝑥)
を用いてタスクの優先順位をローカルで再評価する．そして，
各重複対象タスクに対する予算の分配状況を，再評価によっ
て入れ替える．
具体的には，通信コストが想定以上に増大している場合，そ

のタスクへの重複予算の割り当てを取り消し，下位のタスク
あるいは次点の候補と予算を入れ替えることになる．これに
より，ネットワークの環境に適応した重複判断と重複制御を
実現できる．最後に，経路統計情報に基づいた予算の再評価・
再分配を受けて，現在割り当てようとしているタスクに重複

— 4 —

のための予算が残っているかを判断する．ここで予算が残っ
ている場合には，このタスクを 1回だけ重複し，そのタスクを
基準とした実行パス上にあるタスクの予算を 1減らす．以上
が，動的情報を加味した重複判断である．
図 4に，本提案手法を用いて重複制御を行った例を示す．要
求前の静的解析と，転送中の動的情報を加味した重複判断に
より，実行時間短縮に対する必要性の高いタスクのみが重複
スケジュールされる．

図 3 Grain 算出のための Joint/Fork set の例

図 4 DAG 構造と粒度に基づいて重複を行う例

4. 性 能 評 価
4. 1 実 験 環 境
提案手法の性能と特性を明らかにするため，計算機シミュ
レーションを用いて評価を行う．ここでは，従来手法である
AutoICN [10]の環境に基づいたワークフローシミュレータであ
る，icn-sfcsim [15]を用いた．表 1に，評価環境のパラメタを
示す．ICN Nodeがアプリケーションに対する実行要求を行う
ユーザであり，また処理対象のデータを持つエッジノードで
もある．ICN Routerはその間に介在するネットワークノード
であり，INCにおける処理を担うノードである．
本シミュレーションでは，ランダムに生成した DAGをアプ
リケーションとして用いる．投入するアプリケーションのパ
ラメタを表 2に示す．各アプリケーション内のタスク数を 20
個とし，各タスクが持つ後続タスク数を最大 5個で設定してい
る．ランダム DAGによる実験においては，より多くのアプリ

ケーションを想定し，それらに対する汎用的な性能を評価する
ためにアプリケーションの CCR (Communication to Computation
Ratio)を変化させることが考えられる．CCRはアプリケーショ
ン全体の通信と処理の比率であり，アプリケーションを特徴
づける指標の 1つである．そのため，本シミュレーションに
おいても CCRを 0.1から 10.0まで変化させた計 11パターン
を評価している．
比較対象としては，NFJ問題に対する制御を全く行わない

手法 (従来手法，Basic Method)，トポロジカルソートによって
重複のないように割り当てる手法 (以前の取り組み，Advanced
method1)，そして必要なタスクのみ重複させる手法 (提案手法，
Advanced method2)の３つである．これらの手法について，アプ
リケーションの実行時間，タスクの総割り当て数を比較する．

表 1 実験環境のパラメタ
Parameter Value
ICN Node # 100
ICN Router # 5000
Proc. Rate (MIPS) 2000 - 4000
Link Bandwidth (Mbps) 100 - 1000

表 2 アプリケーションのパラメタ
Parameter Value
of tasks for each Apl. 20
of Apl. 1
of successors for each task 0 - 5
CCR of each Apl (0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0)

4. 2 実 験 結 果
図 5に，各手法における平均の割り当て回数についてのグ

ラフを示す．割当回数が実質的に計算資源の消費量と言える．
従来手法は FNJ問題に対して一切制御を行わないため，DAG
の持つ Fork-Join構造に基づいてタスクの重複割当が大量に生
じている．以前の手法である重複排除の制御手法については，
常にアプリケーション内に含まれているタスク数だけ割り当
てるため，割当回数が最も小さい．最後に，提案手法につい
ては，従来手法と以前の手法の中間となるような割当回数を
記録している．提案手法の全体の最大重複数を制限するアプ
ローチにより，すべてのタスクを無差別に重複させるのでは
なく，必要なタスクのみを重複させていることがわかる．
図 6に，アプリケーションの実行時間を示す．従来手法は

FNJ問題の制御を行わず大量の重複を発生させることで，くま
なく周辺ノードへ要求を行い，結果としてその中からよい実行
性能を得られるノードで実行することに成功したものが現れ
る．これにより，他の手法と比較してかなり短い実行時間を得
ることができる．以前の手法は，最小の計算資源消費量でアプ
リケーションを実行させるため，従来手法と対象的に実行時
間は大きくなっている．これらに対し，提案手法は従来手法
と以前の手法の中間となるような実行性能となった．これら
のことから，提案手法は重複に対して制御を行わない場合と，
重複のない割り当てを行う場合の中間のような性能を実現し
ていることがわかった．つまり，本手法は無制限な重複を許
容する従来手法よりも計算資源消費を抑制しつつ，重複を完
全に排除する以前の手法よりも高い実行性能を実現すること
ができており，計算資源消費量と実行性能のトレードオフの

— 5 —

0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.0
CCR (Communication to Computation Ratio)
0

100

200

300

400
Co
un
t

Basic method (No control for FNJ problem)
Advanced method2 (Partial duplicate control)
Advanced method1 (Duplicate avoidance control)

図 5 各手法におけるタスクの総割当回数

0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.0
CCR (Communication to Computation Ratio)

0.00

0.20

0.40

0.60

0.80

1.00

Ti
m

e
(1

00
 se

co
nd

s)

Basic method (No control for FNJ problem)
Advanced method2 (Partial duplicate control)
Advanced method1 (Duplicate avoidance control)

図 6 各手法におけるアプリケーション実行時間

関係においてバランスのよい割当を実現できていると言える．

5. まとめと今後の展望
本稿では，自律的な In-network computingにおける計算資源
消費量と実行時間のトレードオフの関係の中で，DAGの構造
とタスクの粒度に基づき必要なタスクのみを重複させること
で，バランスのよい割当を実現するタスクスケジューリング
法を提案した．
今後はより大規模・より動的なネットワークへの対応とし
て，動的指標での重み付けをより高度化していくことが考え
られる．現在はシンプルな統計値をそのまま利用しているが，
統計値を元に周囲のネットワーク状況を推測するようなファ
ンクションを各ノードが持つことにより，より精度の高いタ
スクの順序付け・重複判断ができるようになると考えられる．
このファンクションには，機械学習や LLMといった AI的手
法を使うことが挙げられる．そのため，今後の展望としては，
動的指標の活用方法を高度化させていくことにより，幅広い
シチュエーションに適用できるよう手法を拡張していきたい．
謝辞 本稿は JSPS科研費（25K03113, 23K28078）の助成を
受けたものである．ここに記して謝意を表す．

文 献
[1] Mohsen Marjani, Fariza Nasaruddin, Abdullah Gani, Ahmad Karim,

Ibrahim Abaker Targio Hashem, Aisha Siddiqa, and Ibrar Yaqoob.
Big iot data analytics: Architecture, opportunities, and open research
challenges. IEEE Access, Vol. 5, pp. 5247–5261, 2017.

[2] Mohammad Saeid Mahdavinejad, Mohammadreza Rezvan, Moham-
madamin Barekatain, Peyman Adibi, Payam Barnaghi, and Amit P.
Sheth. Machine learning for internet of things data analysis: a survey.
Digital Communications and Networks, Vol. 4, No. 3, pp. 161–175,
2018.

[3] Michael Grieves and John Vickers. Digital Twin: Mitigating Unpre-
dictable, Undesirable Emergent Behavior in Complex Systems. In
Franz-Josef Kahlen, Shannon Flumerfelt, and Anabela Alves, editors,
Transdisciplinary Perspectives on Complex Systems: New Findings
and Approaches, pp. 85–113. Springer International Publishing.

[4] Fei Tao, Qinglin Qi, Lihui Wang, and A.Y.C. Nee. Digital twins and
cyber ‒ physical systems toward smart manufacturing and industry
4.0: Correlation and comparison. Engineering, Vol. 5, No. 4, pp.
653–661, 2019.

[5] Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. Internet
of vehicles: From intelligent grid to autonomous cars and vehicular
clouds. In 2014 IEEE World Forum on Internet of Things (WF-IoT),
pp. 241–246.

[6] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B.
Letaief. A survey on mobile edge computing: The communication
perspective. IEEE Communications Surveys Tutorials, Vol. 19, No. 4,
pp. 2322–2358, 2017.

[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli.
Fog computing and its role in the internet of things. In Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud Computing,
MCC ’12, pp. 13–16. Association for Computing Machinery.

[8] Shadi Al-Sarawi, Mohammed Anbar, Rosni Abdullah, and Ahmad B.
Al Hawari. Internet of Things Market Analysis Forecasts, 2020 ‒
2030. In 2020 Fourth World Conference on Smart Trends in Systems,
Security and Sustainability (WorldS4), pp. 449–453.

[9] Lei Liu, Yang Peng, Mehdi Bahrami, Liguang Xie, Akira Ito, Sevak
Mnatsakanyan, Gang Qu, Zilong Ye, and Huiping Guo. ICN-FC: An
Information-Centric Networking based framework for efficient func-
tional chaining. In 2017 IEEE International Conference on Communi-
cations (ICC), pp. 1–7.

[10] 金光永煥,花田真樹. Icn ワークフローにおける自律的なタスク
割当てアルゴリズムの性能解析. 電子情報通信学会技術研究報
告, Vol. 125, No. 13, pp. CS2025–3, 13–18, 2025 年 4 月.

[11] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of things (iot): A vision, archi-
tectural elements, and future directions. Future Generation Computer
Systems, Vol. 29, No. 7, pp. 1645–1660, 2013. Including Special sec-
tions: Cyber-enabled Distributed Computing for Ubiquitous Cloud and
Network Services Cloud Computing and Scientific Applications ̶
Big Data, Scalable Analytics, and Beyond.

[12] Yuki Niibe and Noriaki Kamiyama. Task scheduling with duplication
avoidance for icn-based autonomous in-network computing. In 2025
IEEE 31st International Symposium on Local and Metropolitan Area
Networks (LANMAN), pp. 1–2, 2025.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded
computations by work stealing. J. ACM, Vol. 46, No. 5, p. 720 ‒ 748,
September 1999.

[14] A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed
Systems, Vol. 4, No. 6, pp. 686–701, 1993.

[15] Kanemitsu Lab. ncl-teu/ncl icn-sfcsim. https://github.com/ncl-
teu/ncl icn-sfcsim, 2025. Accessed: 2026-01-17.

— 6 —

