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あらまし コンテンツ配信ネットワーク（CDN）は，冗長なトラフィックをフィルタリングし，オリジンサーバを保
護するために，階層的なキャッシュアーキテクチャに大きく依存している．しかし，このようなトラフィックの局所
性への依存は，キャッシュ汚染攻撃（CPA）に対する根本的な脆弱性を生み出す．従来の CPAは静的なフラッディン
グ戦略を採用していたが，敵対的な戦略の出現により，従来の防御を回避可能な，適応的かつ最適化された攻撃の脅
威が生じている．本稿では，勾配フリーの強化学習を活用し，多階層 CDNの性能限界を探索する新しい敵対的フレー
ムワークを提案する．完全にブラックボックスな環境で動作する本フレームワークは，攻撃を部分観測マルコフ決定
過程（POMDP）としてモデル化し，摂動ベースのポリシィ探索アルゴリズムを使用して攻撃トラフィックの分散を最
適化する．3階層 CDNトポロジにおける広範なシミュレーションにより，システムが以前考えられていたよりもはる
かに脆弱であることを示す．我々は，毎秒 120リクエストという控えめな容量を持つ最適化された攻撃で，オリジン
サーバを飽和させ，30%を超えるパケットドロップ率を引き起こすのに十分であることを示す．さらに，我々の微視
的分析により，2つの直感に反する連鎖的な障害メカニズムが明らかになった．それは，エッジの障害が人気のある
トラフィックを上流に押し上げる「中間層ホットスポットのバックプレッシャ（Mid-tier Hotspot Back-pressure）」と，
リクエスト量の増加がトラフィックの分散により逆にキャッシュ効用の低下を招く「リクエストレートとヒット率の
乖離（Decoupling of Request Rate and Hit Ratio）」である．これらの知見は，最も壊滅的な攻撃とは，単に帯域幅を枯
渇させるものではなく，キャッシュロジックの統計的基盤を解体するものであることを強調している．
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Abstract Content Delivery Networks (CDNs) rely heavily on hierarchical caching architectures to filter redundant traffic and
protect origin servers. However, this dependency on traffic locality creates a fundamental vulnerability to Cache Pollution
Attacks (CPA). While traditional CPAs employ static flooding strategies, the emergence of adversarial strategy introduces the
threat of adaptive, optimized attacks that can bypass conventional defenses. In this paper, we propose a novel adversarial
framework that leverages gradient-free reinforcement learning to explore the performance boundaries of multi-tier CDNs.
Operating in a strictly black-box environment, our framework models the attack as a Partially Observable Markov Decision
Process (POMDP) and utilizes a perturbation-based policy search algorithm to optimize the dispersion of attack traffic. Ex-
tensive simulations on a three-tier CDN topology demonstrate that the system is far more fragile than previously understood.
We show that an optimized attack with a modest capacity of 120 requests per second is sufficient to saturate the origin server,
inducing a packet drop rate exceeding 30%. Furthermore, our microscopic analysis uncovers two counter-intuitive cascading
failure mechanisms: Mid-tier Hotspot Back-pressure, where edge failures force popular traffic upstream, and the Decoupling of
Request Rate and Hit Ratio, where increased request volume paradoxically leads to lower cache utility due to traffic dispersion.
These findings highlight that the most devastating attacks are those that dismantle the statistical foundations of caching logic
rather than merely exhausting bandwidth.
Key words CDN, CPA, Hierarchical Cache System

1. は じ め に
コンテンツ配信ネットワーク（CDN）は現代のインターネッ
トのバックボーンとして機能しており，世界的なデータトラ
フィックの指数関数的な増加に対処するために，階層的なキャッ
シュアーキテクチャに大きく依存している [1]．多くの場合，
ジップ（Zipf）分布によって特徴付けられるユーザリクエストの

時間的局所性を利用することで，CDNは大規模なトラフィック
急増からオリジンサーバを効果的に保護している [2]．しかし，
この局所性への依存は根本的な脆弱性を露呈している．もしリ
クエストパターンが悪意を持って変更され，局所性が最小化さ
れた場合，キャッシュ効率は崩壊する．この種の脅威はキャッ
シュ汚染攻撃（CPA）として知られ，帯域幅を枯渇させること
によってではなく，キャッシュロジック自体を妨害することに
よってシステム性能を低下させることを目的としている [3]．
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従来の CPA は通常，ランダムフラッディングや偽の局所性
注入といった静的で事前に定義されたパターンを採用していた
が，サイバー脅威の状況はより高い知能と適応性へと進化して
いる．強化学習（RL）の出現により，攻撃者はシステム防御
に応じて戦略を動的に最適化することが可能になった．これは
重要な研究課題を提起する．システムの混雑を最大化するよう
に自律的に学習できる適応的な攻撃者に直面したとき，多階層
CDN の性能限界はどこにあるのか？そしてさらに重要なこと
に，そのような最適化された攻撃下でシステムを障害に追い込
む微視的なメカニズムとは何か？
これらの問いに答えるために，我々は勾配フリーのポリシィ
探索アルゴリズムを利用して階層型 CDNの回復力を調査する，
新しい敵対的フレームワークを提案する．ターゲットのホワイ
トボックス知識を仮定する先行研究とは異なり，我々のエー
ジェントは完全にブラックボックスな環境で動作し，観測され
たサービス品質（QoS）フィードバックのみに基づいて攻撃戦略
を最適化する．我々は攻撃を部分観測マルコフ決定過程として
モデル化し，摂動ベースの最適化手法を用いて，オリジンサー
バの遅延とパケットドロップ率を最大化するトラフィック分布
を学習する．

3階層 CDNアーキテクチャにおける広範なシミュレーショ
ンにより，システムが以前理解されていたよりもはるかに脆弱
であることを明らかにする．我々は，総リンク容量の一部に過
ぎない毎秒 120リクエストという控えめな容量の最適化された
攻撃で，オリジンサーバを飽和させ，30%を超えるパケットド
ロップ率を引き起こすのに十分であることを実証する．攻撃の
潜在能力を示すだけでなく，本稿は障害メカニズムの深いフォ
レンジック分析を提供する．我々は 2つの直感に反する現象を
発見した．エッジの障害が人気のあるトラフィックを上流に押
し上げる「中間層ホットスポットのバックプレッシャー」と，
トラフィック量の増加が分散によって逆にキャッシュヒット率
の低下を招く「リクエストレートとヒット率の乖離」である．
これらの知見は，最も壊滅的な攻撃とは，ボリュームでネッ
トワークを氾濫させるものではなく，リクエスト分布の分散
（dispersion）を最大化し，キャッシュの統計的基盤を体系的に
解体するものであることを示唆している．

2. 関 連 研 究
コンテンツ配信ネットワークのセキュリティは広範な研究の
対象となってきたが，主にボリューム型の分散型サービス拒
否（DDoS）攻撃とその緩和に焦点が当てられてきた．しかし，
キャッシュ汚染攻撃という特定の領域は，より洗練された脅威
ベクトルを表している．CPAに関する初期の研究は局所性破壊
攻撃に焦点を当てており，攻撃者は人気のないコンテンツリク
エストのストリームを生成して有効なキャッシュエントリを追
い出す [4]．理論モデルは，そのような攻撃がキャッシュヒット
率を大幅に低下させる可能性があることを示しているが，これ
らの研究は多くの場合，キャッシュの置換ポリシィや動的な負
荷変化に適応しない静的な攻撃戦略を仮定している．
より最近の研究では，ネットワークセキュリティにおける敵
対的 AIの応用が探求されている．いくつかの研究では，深層強
化学習（DRL）を適用して敵対的トラフィックフローを生成し
ており [5] [6]，主に侵入検知システムの回避やボットネットの
調整の最適化の文脈で行われている．しかし，既存の RLベー
スの攻撃フレームワークのほとんどは，ターゲット環境の微分
可能なモデルを必要とする勾配ベースの手法に依存しており，
現実世界のブラックボックスなシナリオではめったに利用でき
ない [7]．本稿は，勾配フリーの 0 次最適化アプローチを採用

することで他と一線を画しており，CDN のトポロジや状態に
関する内部知識なしに，エージェントが効果的な戦略を学習す
ることを可能にする．
さらに，CPAの影響分析に関して，先行文献は主に全体的な

ヒット率の低下などの巨視的な指標に焦点を当ててきた [8]．多
階層構造内での連鎖的な影響を調査した研究はほとんどない．
本稿は，エッジおよび中間層ノード全体でのトラフィックダイ
ナミクスの微視的な分析を提供し，バックプレッシャーの現象
とトラフィック分散によって引き起こされるキャッシュスラッ
シングのメカニズムを明確に特徴付けることで，このギャップ
を埋める．この粒度の高い視点は，次世代の分布認識型防御メ
カニズムを設計するための新しい洞察を提供する．

3. 脅威モデルと問題定式化
本節節では，攻撃者の能力と，攻撃者と階層型 CDNアーキ

テクチャ間の相互作用メカニズムを形式的に定義する．我々は
適応的な攻撃戦略を部分観測マルコフ決定過程（POMDP）と
して枠組み化する．

3. 1 攻撃シナリオ
我々は，攻撃者がN = {1, 2, . . . , 𝑁}と表記される 𝑁 個の侵害

されたエッジノードからなるボットネットを制御する分散型の
敵対的設定を検討する．ターゲット CDNは，M = {1, 2, . . . , 𝑀}
のコンテンツアイテムセットをホストする．
攻撃者の目的は，トラフィック分布をインテリジェントに調

整することで，オリジンサーバでのサービス品質（QoS）の低下
を最大化することである．具体的には，攻撃者は平均リクエス
ト待機時間とパケットドロップ率を増加させることを目指す．
しかし，攻撃者はリソースの制約下で動作する．総トラフィッ
ク生成能力は，攻撃容量（𝐶𝑚𝑎𝑥）と呼ばれる最大帯域幅予算に
よって制限される．攻撃者は，被害を最大化するために，この
容量を 𝑁 個のノードと 𝑀 個のコンテンツアイテム全体に動的
に配分しなければならない．

3. 2 POMDP定式化
攻撃者と CDN環境との相互作用は，タプル ⟨S,A,P,R⟩ で

定義される離散時間 POMDPとしてモデル化される．
3. 2. 1 状態空間 (S)
攻撃者はネットワークエッジで動作するため，CDN の内部

状態は直接観測できない．エージェントは外部からのフィード
バックに依存する必要がある．タイムステップ 𝑡 において，観
測された状態 𝑆𝑡 は，前の時間枠 [𝑡 − 1, 𝑡)の間に観測されたター
ゲットオリジンサーバの QoSフィードバックから構築される．
状態ベクトルは次のように定義される．
𝑆𝑡 = {𝑊𝑡−1, 𝐷𝑡−1} (1)

ここで，𝑊𝑡−1 は平均リクエスト待機時間を表し，𝐷𝑡−1 はリク
エストドロップ率を示す．これら 2つの指標は，ターゲットシ
ステムの混雑レベルの代理指標（プロキシ）として機能する．

3. 2. 2 行動空間 (A)
行動はトラフィック分布ポリシィを定義する．時間 𝑡 におい

て，行動 A𝑡 は 𝑁 × 𝑀 行列として表され，各要素 𝑎𝑖, 𝑗 はノー
ド 𝑖 がコンテンツ 𝑗 をターゲットとして生成するトラフィック
レートに対応する．
攻撃をステルス性を保ち，物理的な帯域幅制約を遵守させる

ために，我々は潜在的パラメタ化手法を採用する．𝜽 𝑡 ∈ R𝑁×𝑀

を潜在ポリシィパラメタ行列とし，これは最適化アルゴリズム
における解ベクトルに対応する．実際の行動行列 A𝑡 は，𝜽 𝑡 に
ソフトマックス関数を適用し，攻撃容量でスケーリングするこ
とによって導出される：
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A𝑡 = 𝐶𝑚𝑎𝑥 · Softmax(𝜽 𝑡 ) (2)

ここで，ソフトマックス関数はすべての 𝑁 ×𝑀 ペアの平坦化さ
れたベクトルに対して適用され，以下を保証する．

𝑁∑
𝑖=1

𝑀∑
𝑗=1

𝑎
(𝑡 )
𝑖, 𝑗 = 𝐶𝑚𝑎𝑥 (3)

この定式化により，総攻撃トラフィックが一定かつ 𝐶𝑚𝑎𝑥 に
よって制限されることが保証される一方で，トラフィックの分
布は学習されたポリシィに基づいて動的にシフトする．

3. 2. 3 報酬関数 (R)
報酬関数は，強化学習エージェントを最も損害を与える戦略
へと導くために重要である．我々は報酬 𝑅𝑡 を，オリジンサー
バの性能低下の複合指標として定義する．遅延の増加とパケッ
トドロップの誘発を同時に動機付けるために，我々は以下の非
線形報酬関数を提案する．

𝑅𝑡 = 𝑊𝑡 × (1 + 𝐷𝑡 ) (4)

この設計には，2段階のインセンティブメカニズムが組み込ま
れている．
（ 1） 遅延フェーズ: システムが軽負荷の場合（𝐷𝑡 ≈ 0），報
酬は主に𝑊𝑡 によって駆動される．エージェントは，キャッシュ
ミスを引き起こし，処理時間を増加させるリクエストパターン
を見つけるように促される．
（ 2） 飽和フェーズ: 攻撃がシステムを限界点まで押し上げ
ることに成功すると（𝐷𝑡 > 0），係数 (1 + 𝐷𝑡 ) が乗数として作
用する．これにより報酬が大幅に増幅され，エージェントがシ
ステムを崩壊および高パケット損失の状態に維持するための強
力な勾配を提供する．

4. 提案フレームワーク
本節節では，提案するフレームワークについて詳述する．ま
ず，攻撃者がブラックボックス環境で効果的な戦略を学習でき
るようにする勾配フリー最適化アルゴリズムを紹介する．次に，
階層型 CDNのダイナミクスをシミュレートするために使用さ
れる確率的トラフィック生成モデルについて説明する．

4. 1 勾配フリーポリシィ探索アルゴリズム
報酬関数の明示的な勾配 ∇𝜃𝑅(𝜃) にアクセスできない CDN
のブラックボックスな性質を考慮し，我々は 0 次最適化アプ
ローチを採用する．具体的には，摂動ベースの確率的山登り法
（Stochastic Hill Climbing）を利用して，高次元の行動空間を探
索する．
アルゴリズムの核となるのは，反復的な「摂動観測（Perturb-

and-Observe）」プロセスである．攻撃者は，トラフィック分布
の正規化されていないロジットを表す潜在ポリシィベクトル
𝜃 ∈ R𝑁×𝑀 を保持する．各タイムステップ 𝑡 において，エー
ジェントは現在のポリシィにガウス摂動ノイズ 𝜖𝑡 ∼ N(0, 𝜎2I)
を加えることで局所的なポリシィランドスケープを探索し，候
補ポリシィ 𝜃𝑡 = 𝜃𝑡−1 + 𝜖𝑡 を生成する．
この潜在的な候補を物理的に実現可能な攻撃トラフィック行
列 A𝑡 に変換するために，総攻撃容量 𝐶𝑚𝑎𝑥 でスケーリングさ
れたソフトマックス正規化を適用する．これにより，生成され
たトラフィックが帯域幅の制約を厳密に遵守しながら，異なる
コンテンツアイテム間で動的に焦点を移動することが保証さ
れる．

A𝑡 = 𝐶𝑚𝑎𝑥 ·
exp(𝜃𝑡 )∑

𝑖, 𝑗 exp(𝜃𝑡 )𝑖, 𝑗
(5)

A𝑡 を実行すると，エージェントはシステムフィードバック
𝑆𝑡 を観測し，報酬 𝑅𝑡 = 𝑊𝑡 (1 + 𝐷𝑡 ) を計算する．ポリシィの更
新は貪欲選択メカニズムに従う．候補ポリシィは，過去最高報
酬（𝑅𝑏𝑒𝑠𝑡）よりも高い報酬をもたらす場合にのみ採用され，こ
の論理分岐は形式的に次のように表される．

𝜃𝑡 =


𝜃𝑡−1 + 𝜂 · 𝜖𝑡 if 𝑅𝑡 > 𝑅𝑏𝑒𝑠𝑡

𝜃𝑡−1 otherwise
(6)

ここで，𝜂 は学習率である．このメカニズムは，微分可能な環
境モデルを必要とせずに勾配方向を効果的に推定し，攻撃者が
最大の混雑を引き起こすトラフィックパターンに適応的に収束
することを可能にする．本手順をアルゴリズム 1にまとめる．

Algorithm 1確率的山登り法による適応型攻撃戦略
Require: 攻撃容量 𝐶𝑚𝑎𝑥 ,学習率 𝜂,摂動スケール 𝜎

Ensure: 最適化された攻撃分布 A
1: ポリシィ初期化 𝜃 ← 0,最高報酬 𝑅𝑏𝑒𝑠𝑡 ← −∞
2: loop
3: 摂動: ノイズ 𝜖 ∼ N(0, 𝜎2I) をサンプリング
4: 行動生成: 𝜃 ← 𝜃 + 𝜖
5: A← 𝐶𝑚𝑎𝑥 · Softmax(𝜃 )
6: 実行: CDN に Aを適用し，フィードバック𝑊𝑡 , 𝐷𝑡 を観測
7: 評価: 𝑅𝑡 ←𝑊𝑡 × (1 + 𝐷𝑡 )
8: 更新:
9: if 𝑅𝑡 > 𝑅𝑏𝑒𝑠𝑡 then

10: 𝜃 ← 𝜃 + 𝜂 · 𝜖
11: 𝑅𝑏𝑒𝑠𝑡 ← 𝑅𝑡

12: end if
13: end loop

4. 2 確率的トラフィックモデリング
現実的なトラフィックモデリングは，階層型キャッシングの

堅牢性を評価するために不可欠である．我々は，異なる確率過
程を使用して，正当なユーザ行動と敵対的トラフィックの間の
相互作用をシミュレートする．
正当なトラフィック（Benign Traffic）: 正当なユーザリクエス

トは，Webトラフィックに典型的な強い時間的局所性を反映す
るようにモデル化される．ジップ分布を仮定し，𝑘 番目に人気
のあるコンテンツのリクエスト確率を 𝑃(𝑘) ∝ 𝑘−𝛼 で与え．実
験では歪度パラメタを 𝛼 = 1.2に設定する．この高い値は，効
率的なキャッシング（「80/20の法則」）が行われているシナリ
オをシミュレートしており，破壊が困難な堅牢なベースライン
防御を作成する [9]．リクエストの到着時間はレート 𝜆𝑏𝑒𝑛𝑖𝑔𝑛 の
ポアソン過程に従い，到着間隔が指数分布になるようにする．
攻撃トラフィック（Attack Traffic）: 単純な周期性やボリュー

ムの異常に基づく検出メカニズムを回避するために，各ノード
によって生成される攻撃トラフィックもポアソン過程に従う．
ただし，正当なトラフィックとは異なり，各攻撃フローのレー
トパラメタは，前節で導出された行動行列 A𝑡 の要素 𝑎𝑖, 𝑗 に
よって動的に制御される．固定レートのバーストを送信するの
ではなく，これらのポアソンストリームのレートを変調するこ
とで，攻撃者は敵対的リクエストを背景ノイズに紛れ込ませ，
単にネットワークを氾濫させるのではなく，総トラフィックの
統計的特性（例：全体的なジップパラメタの低下）をターゲッ
トにする．
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5. 数値評価の環境
本節では，攻撃フレームワークを評価するために構築された
シミュレーション環境について詳述する．実験設計は，階層的
でリソース制約のある CDNアーキテクチャに焦点を当ててお
り，特に敵対的ストレス下での多階層キャッシング調整の脆弱
性を露呈するように調整する．

5. 1 トポロジとネットワークアーキテクチャ
単一のオリジンサーバ，3台の中間層サーバ（Mid-tier），お
よび 15台のエッジサーバで構成される 3階層コンテンツ配信
トポロジをモデル化する．現実世界のネットワークに固有の構
造的不均質性を反映するために，階層間の接続は非対称に分
散されている．3台の中間層サーバ（A，B，Cとラベル付け）
は，エッジノードの異なるクラスタにサービスを提供する．中
間サーバ Aは 3台，中間サーバ Bは 5台，中間サーバ Cは 7
台のエッジサーバに接続する．この構成は不均等な負荷分散の
可能性を生み出し，中間サーバ C は本質的により高い総トラ
フィック圧力に直面するため，このようなトポロジ上のボトル
ネックを特定して悪用する攻撃者の能力を評価する．

5. 2 サーバ仕様とトラフィックダイナミクス
システムは，高負荷の本番環境をシミュレートするために，
厳格な処理制約の下で構成されている．階層内のすべてのサー
バ（エッジ，中間，オリジン）は，毎秒 200リクエストのサー
ビスレート（𝜇）で標準化されている．しかし，それらのスト
レージの役割は大きく異なる．15 台のエッジサーバはそれぞ
れ，10アイテムの制限された容量を持つ一時的なキャッシュと
して動作する．同様に，3台の中間層サーバは，30アイテムの
容量を持つ中間キャッシング層として機能する．両方の層は，
CDNで広く使用されている LRU（Least Recently Used）置換ポ
リシィを用いる [10]．対照的に，オリジンサーバはコンテンツ
全体のユニバース（𝑀 = 100）の恒久的なリポジトリとして機
能する．利用可能なすべてのコンテンツアイテムを保存するた
め，キャッシュ置換メカニズムやストレージ制限の対象にはな
らない．その主な制約は，ストレージ容量ではなく処理帯域幅
である．
混雑を管理するために，すべてのサーバは最大容量 𝐿𝑚𝑎𝑥 =

1000リクエストの先入れ先出し（FIFO）キューを維持する．シ
ステムは「ドロップテール」ポリシィの下で動作し，キューが
満杯のときに到着したリクエストは即座に破棄され，パケット
ドロップ率指標（𝐷𝑡）に寄与する．コンテンツ集合は，均一な
サイズの 𝑀 = 100 個のユニークなアイテムで構成される．正
当なユーザトラフィックは，各エッジサーバで毎秒 60リクエ
ストの到着率（𝜆𝑒𝑑𝑔𝑒）を持つポアソン過程に従って生成され
る．これらのコンテンツの人気度は，歪度パラメータ 𝛼 = 1.2
のジップ分布に従う．この高い歪度は，少数の人気コンテンツ
がリクエストの大部分を占めることを意味し，通常の状態では
キャッシングが非常に効果的なシナリオを作成する．

5. 3 システム負荷分析
この設定の重要な側面は，エッジとオリジンの間の意図的
なリソースの不一致である．15 台のエッジサーバによって生
成される総リクエストレートは，合計で毎秒 900 リクエスト
（15 × 60）になる．オリジンサーバのサービス能力が毎秒 200
リクエストに制限されていることを考慮し，システムが効果的
なキャッシングなしでは持続不可能になるように設計する．多
階層アーキテクチャは，オリジンの飽和を防ぐために，着信ト
ラフィックの少なくとも 78% を正常にフィルタリングしなけ
ればならない．この脆弱性により，システムはキャッシュ汚染
攻撃の理想的なテストベッドとなる．キャッシュヒット率のわ

ずかな低下でさえ，連鎖的な混雑とサービス拒否を引き起こす
可能性があるためである．
強化学習エージェントは，Δ𝑡 = 10秒の離散時間スロットで

この環境と相互作用し，パフォーマンス指標がポリシィ更新の
ために集計される前に，キューのダイナミクスが安定するのに
十分な時間を確保する．主なシミュレーションパラメタを表 1
にまとめる．

表 1: シミュレーションパラメタの設定値
パラメータ 値

総コンテンツアイテム数 (𝑀) 100
ジップ歪度パラメータ (𝛼) 1.2
タイムスロット期間 (Δ𝑡) 10秒
キュー容量制限 (𝐿𝑚𝑎𝑥 ) 1000リクエスト

エッジ層 (15ノード)
到着率 (𝜆𝑒𝑑𝑔𝑒) 60 req/s
サービスレート (𝜇𝑒𝑑𝑔𝑒) 200 req/s
キャッシュ容量 10アイテム (10%)

中間層 (3ノード)
トポロジ分布 (A, B, C) 3, 5, 7接続
サービスレート (𝜇𝑚𝑖𝑑) 200 req/s
キャッシュ容量 30アイテム (30%)

オリジン層 (1ノード)
サービスレート (𝜇𝑜𝑟𝑖𝑔𝑖𝑛) 200 req/s
ストレージ容量 全コンテンツ (制限なし)

6. 数 値 評 価
本節では，最適化された攻撃戦略下でのシステムの挙動を分

析することにより，攻撃フレームワークの性能を評価する．特
に攻撃容量が 120 req/sのシナリオに焦点を当て，巨視的なサー
ビス品質指標と微視的なキャッシュ状態を対照群（攻撃なし）
と比較する．

図 1: 平均待機時間とドロップ率に対する攻撃強度の影響: 120
req/sで，ドロップ率は 32.91%に達し，待機時間はキューの制
限（≈ 5𝑠）で飽和．

6. 1 全体的な影響分析
図 1に，攻撃者のシステム全体への攻撃強度 (1秒あたりの攻

撃パケット数)に対して，平均待機時間と要求のドロップ率をプ
ロットする．攻撃が発生しない場合，システムは平均待機時間
約 0.96秒，パケットドロップゼロで健全に動作しており，LRU
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キャッシング戦略が通常のジップ分布下で 900 req/sの総エッジ
トラフィックを効果的にフィルタリングしていることを確認で
きる．しかし，攻撃容量が増加するにつれて劇的な低下が観察
される．攻撃強度が 120 req/sにおいて，平均待機時間は即座に
4.98秒に飽和し，理論上のキュー制限（1000 req/200 req/s = 5𝑠）
に近づく．同時に，ドロップ率は線形に上昇し，32.91%に達す
る．この飽和は，攻撃が正当なトラフィックをハイジャックす
ることに成功し，オリジンサーバに到着する総量が攻撃者自身
の注入レートをはるかに超える原因となっていることを示して
おり，単なる帯域幅の消費ではなく，キャッシュ障害の増幅効
果によって損害が引き起こされていることを示している．

6. 2 キャッシュダイナミクスの分析
CDN の飽和現象を促進するメカニズムを理解するために，
攻撃が発生していない状態と攻撃状態を比較し，攻撃強度と
キャッシュヒット率の分布を分析する．

(a)キャッシュヒット率

(b)リクエスト入力レート
図 2: 正常時のシステム状態: 人気コンテンツはエッジで効率的
にキャッシュされ，バックエンドを保護

図 2に，横軸にコンテンツの人気順位を，縦軸に各キャッシュ
サーバ別に，各コンテンツの CPAが生じていない正常時の，各
キャッシュサーバにおける (a) キャッシュヒット率と (b) 要求
到着レートを，値の大小に応じて色を変えて表示することで，
これら指標の値の大小を可視化する．システムはエッジサーバ
で人気コンテンツに対して高いヒット率を示す．その結果，ト
ラフィックの大部分はエッジで吸収され，中間サーバとオリジ
ンサーバには最小限の入力負荷しかかからない．これは，高局
所性トラフィックの処理における多階層 LRUアーキテクチャ
の有効性を実証している．
しかし CPA発生時は，この状況は劇的に変化する．図 3に，

CPA発生時の，これら指標の変化（𝑉𝑎𝑙𝑢𝑒𝑎𝑡𝑡𝑎𝑐𝑘 −𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙）
を同様に可視化する。中間層，特に 7つのエッジノードとオリ
ジンサーバに接続する中間サーバ Cにおいて，リクエスト量の

大規模な急増が観察される．中間サーバ C上のコンテンツ ID
0-5に対応する濃い赤色の帯は，人気コンテンツのリクエスト
が上流に漏洩していることを示している．同時に，ヒット率の
差分マップは，中間層でこれらの人気アイテムのヒット率が大
幅に低下していることを示している．この入力の増加とヒット
率の低下の組み合わせは，キャッシュロジックの根本的な混乱
を示している．

(a)入力レートの変化

(b)ヒット率の変化
図 3: 攻撃下（120 req/s）のシステム状態: 青は減少，赤は増加
を表し，中間サーバ Cでの大規模なトラフィック急増とヒット
率低下が発生

6. 3 メカニズム分析: 直感に反する現象
ヒートマップの観察に基づき，CPAを特徴付ける 2つの直感

に反する現象を特定し説明する．
6. 3. 1 人気コンテンツの漏洩
直感的には，キャッシュ汚染攻撃は主に「コールド（不人気）」

なコンテンツでネットワークを氾濫させると予想される．しか
し，前節結果は，最適攻撃を行った際，CDN階層の中間層にお
いて人気コンテンツのリクエストレートが大幅に増加した．こ
の現象はエッジ障害の直接的な副作用であり，攻撃トラフィッ
クはまずエッジサーバで人気コンテンツを追い出し，ローカル
ヒット率を急落させる．その結果，これらの人気アイテムに対
する正当なリクエストはミスとなり，上位のキャッシュサーバ
に転送される．このプロセスは事実上，ホットスポットをエッ
ジから中間層へ「押し上げ」，上位層が処理するように設計され
ていない人気トラフィックのバックプレッシャーを生み出す．

6. 3. 2 リクエストレートとヒット率の乖離
さらに逆説的な観察は，リクエストレートとヒット率の乖離

である．中間層での人気コンテンツのリクエストが急増してい
るにもかかわらず，これらのアイテムのキャッシュヒット率は
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大幅に低下しており，高頻度が通常高いヒット率をもたらすと
いう標準的な局所性の原則と矛盾している．この異常は，総ト
ラフィックの分散によって引き起こされる．攻撃者は，低ジッ
プパラメタに相当する，高度に分散されたトラフィックパター
ンを生成する．これが正当なトラフィックと混在すると，アク
ティブコンテンツの「ワーキングセット」が劇的に拡大する．
LRUポリシィの下では，人気アイテムが頻繁に到着しても，連
続するリクエスト間の間隔が大量のユニークな攻撃リクエスト
で満たされてしまう．これはキャッシュスラッシングを引き起
こし，人気アイテムが挿入直後に追い出されるため，トラフィッ
クがオリジンサーバまで貫通することを余儀なくされる．

7. 議論と示唆
前節で示された結果は，提案フレームワークが階層型 CDN
の性能を低下させることに成功することを示している．数値的
な指標を超えて，これらの知見はキャッシュ汚染攻撃の本質と
現在の防御パラダイムの限界についての深い洞察を提供する．

7. 1 攻撃者の視点: ボリュームよりも分散
本稿から得られる重要な教訓は，最適な攻撃ベクトルへのシ
フトである．伝統的に，サービス拒否攻撃はボリュームの問題
と見なされており，ターゲットが処理できる以上のビット/秒で
圧倒することを目的としていた．しかし，我々の強化学習エー
ジェントはより巧妙な戦略を発見した．それはリクエスト分布
の分散を最大化することである．総入力の実効ジップ曲線を平
坦化するような散乱したトラフィックを生成することで，攻撃
者はキャッシングアルゴリズムが直面する予測不可能性を最大
化する．LRUポリシィの下では，この高度に分散した状態は最
悪のシナリオを表し，安定したワーキングセットを確立するこ
となく，キャッシュにアイテムを継続的に追い出すことを強制
する．これは，CDN のようなステートフルなシステムにとっ
て，分散攻撃がボリューム攻撃よりも大幅に費用対効果が高い
ことを示している．エージェントは，リクエストのパターンを
よりランダムで均一にすることで混乱させる方が，単に頻度を
増やすよりもはるかに大きな損害を与えることを学習した．

7. 2 防御への洞察: レート制限を超えて
提案手法の成功は，従来の防御メカニズムの不十分さを浮き
彫りにしている．従来の防御は，ヘビーヒッターや異常に高い
レートを持つフローを特定することによって動作するレート制
限に依存することが多い．我々の攻撃は，平坦な分布を使用し
て多数のノードとコンテンツアイテムにトラフィックを分散さ
せるため，単一のフローが典型的なレート制限の閾値をトリ
ガーすることはない．その結果，攻撃はステルス性を保ちなが
らバックエンドに最大の損害を与える．
ボリュームに依存するのではなく，我々のメカニズム分析は
検出のための新しい青写真を示唆している．人気コンテンツの
リクエストレートが上昇しているにもかかわらずヒット率が低
下するという直感に反する現象は，この攻撃の明確な署名（シ
グネチャ）として機能する．我々は，将来の防御システムが
レートベースから分布認識型の検出に移行すべきであると提案
する．防御側は，着信トラフィックのリアルタイムの平坦度ま
たはジップパラメタを監視すべきである．コンテンツ人気度の
突然の説明のつかない分散，またはコンテンツ人気度とキャッ
シュヒット確率の間の乖離は，進行中のキャッシュ汚染攻撃の
高信頼度の指標として機能するはずである．

8. 結 論
本稿では，勾配フリーの強化学習を活用して階層型 CDNの
脆弱性境界を探索する適応型攻撃フレームワークを紹介した．

我々は攻撃を部分観測マルコフ決定過程としてモデル化し，摂
動ベースのポリシィ探索アルゴリズムを利用して，ブラック
ボックス環境での攻撃戦略を最適化した．広範な計算機シミュ
レーション評価により，多階層アーキテクチャは標準的なトラ
フィックに対しては堅牢であるものの，最適化された分布攻
撃の下では脆弱性を示すことが明らかになった．我々は，120
req/sという控えめな攻撃容量で，攻撃者がオリジンサーバを飽
和させ，30%を超えるパケットドロップ率を引き起こすことが
できることを実証した．さらに微視的分析により，2つの重要
な連鎖的障害メカニズム，「中間層ホットスポットのバックプ
レッシャー」と「リクエストレートとヒット率の乖離」が明ら
かになった．これらの現象は，攻撃がキャッシュ効率に必要な
時間的局所性を体系的に解体することによって成功することを
確認している．
本稿は，CDNセキュリティ設計に対する警鐘となるものであ

る．攻撃者が静的なフラッディングから知的で適応的な最適化
へと進化するにつれ，多階層キャッシングの静的な冗長性はも
はや保証された盾ではないことを示している．今後の研究では，
本稿で特定された分布の異常に応じてキャッシングポリシィを
動的に調整できる適応型防御メカニズムの開発に焦点を当てる
予定である．
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