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あらまし ブロックチェーンでは，新規ブロックを生成する際にネットワークの参加者全員でブロックを共有するため
の合意形成が行われる．代表的な合意形成としてはノードの計算能力に基づく競争型合意である PoW (proof of work)

が挙げられる．合意形成の中でも PoS (proof of stake)は，新規ブロックを追加する権利を得るバリデータ (ノード)

が，保有する資産量 (ステーク)に基づいて選出される．このコンセンサスアルゴリズムの特性として，ブロック生成
者は PoWのように計算能力に依存するのではなく，ステーク量が多いほど選出される確率が高くなり，ブロック生
成により獲得するインセンティブが多くなるという仕組みを取っている．PoSのこの仕組みは，ステーク量の多いバ
リデータにとっては有利に働く一方で，新たにネットワークに参加したステーク量の少ないバリデータにとっては不
利な状況を生み出す．この結果，新規バリデータはブロック生成に選出される機会が，ステーク量の多いバリデータ
に比べ減少し，かつブロック生成のインセンティブが少ないため，特定のバリデータにステーク量が集中する．この
ような状況は，ネットワークの分散性や公平性を損なうだけでなく，セキュリティリスクを高める可能性がある．そ
こで本稿では，バリデータ間でステークの集中を解消するインセンティブ手法を提案する．一方でステークの分散化
を図ると，複数の偽バリデータをネットワーク投入し，不正にブロック生成を行う Sybil攻撃に対し脆弱になる可能
性がある．そこで本稿では，バリデータの特徴量を用いたクラスタリングによって，特定の特徴を示す sybil攻撃者を
検知する手法を提案する．
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Abstract In a blockchain，consensus building is performed among all network participants to share new blocks

upon their generation．A representative example of this is Proof of Work (PoW)，a competitive consensus mech-

anism based on the computing power of nodes．In contrast，Proof of Stake (PoS) selects validators (nodes) that

earn the right to add new blocks based on the amount of assets they hold，known as their stake．A defining charac-

teristic of this consensus algorithm is that block producers do not rely on computational power as they do in PoW;

instead，the higher a participant’s stake，the higher their probability of being selected and the greater the incentives

they earn．While this PoS mechanism favors validators with large stakes，it creates a disadvantageous environment

for new participants with smaller stakes．As a result，new validators have fewer opportunities to be selected for

block generation compared to those with high stakes．Because they also receive fewer incentives，stake becomes

concentrated among specific validators．This situation not only undermines the decentralization and fairness of

the network but also potentially increases security risks．To address this，this paper proposes an incentive-based

method to resolve the concentration of stake among validators．However，attempting to decentralize stake can make

the network vulnerable to Sybil attacks，where an attacker injects multiple fake validators to illegitimately generate

blocks．Therefore，this paper also proposes a method to detect Sybil attackers exhibiting specific characteristics

through clustering based on validator feature sets．
Key words Blockchain，Proof of Stake，Clustering．
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1. 研究の背景
ブロックチェーンは，分散ネットワーク上でデータの不変性
と透明性を確保しつつ，取引履歴を共有・管理する分散型台帳
技術である [1]．本技術の最大の特徴は，中央集権的な管理者を
介さず，複数のノードが合意形成アルゴリズムを通じて台帳の
同一性を維持する点にある．当初はビットコインに代表される
暗号資産の基盤技術として注目されたが，現在ではその高い信
頼性を活かし，サプライチェーン，IoT，医療データ管理，ネッ
トワークセキュリティといった多岐にわたる領域への応用が進
められている．
ブロックチェーンネットワークにおけるデータの正当性を
担保するためには，合意形成アルゴリズムが不可欠である．こ
れは，分散環境下にある各ノードが，次に台帳へ追加すべき
ブロックについて一貫した合意を得るためのプロセスを指す．
代表的な手法として，計算資源の投入量を競う Proof of Work

(PoW)，資産の保有量に基づき決定権を割り当てる Proof of

Stake (PoS)，およびノードの一部に障害や不正があっても合
意を維持できる Practical Byzantine Fault Tolerance (PBFT)

などが挙げられる [1] [2].これらのアルゴリズムは，耐障害性，
スケーラビリティ，リソース消費などの面で異なる特性を有し
ており，用途に応じた選定がなされる．特に PoSベースの手法
では，各ノードのステーク (保有資産量)が合意形成に与える影
響力を左右するため，セキュリティや分散性の観点から固有の
課題が指摘されている．
PoSは，各バリデータがネットワーク内にロックしたステー

ク量に応じて，ブロックの生成や検証権限を付与するアルゴ
リズムである．PoWと比較して膨大な計算資源を必要としな
いため，環境負荷が低いという利点がある．例えば Ethereum

2.0では，32 ETHを預託することでバリデータとしての資格を
得ることができ，ネットワークの維持に寄与する [5]．しかし，
PoSの仕組み上，ブロック生成の選出確率や投票権の強さがス
テーク量に比例するため，報酬が大口の資産保有者に偏りやす
い性質を持つ．これにより，多くの報酬を得たバリデータがさ
らに影響力を強めるという富の集中に伴う正のフィードバック
が生じ，結果として中央集権化を招く懸念がある [4]．
本稿では，特定のバリデータへのステーク集中に伴う中央集

権化を抑止し，新規参入者が従来よりも優位に活動可能なイン
センティブ設計を提案する．従来の PoSでは，保有ステーク量
に比例してブロックの提案機会や報酬が増大するため，資本力
のあるノードに権限が集中する課題があった．これに対し本提
案では，インセンティブ算出式を再定義することで，小規模な
ステークを保持するバリデータが獲得できる報酬を相対的に向
上させる．これにより，報酬の偏りを是正し，ネットワークの
自律的な分散化を促進する．一方で，ステークの分散化を推進
することで，多数の偽装ノードを投入してネットワークを操作
する Sybil攻撃への耐性を低下させる懸念が生じる．この課題
に対し本稿では，バリデータの投票行動における偏りや，過去
のブロック生成履歴を特徴量としたクラスタリング手法を導入
し，悪意のあるバリデータを識別・検知する手法を提案する．

2. Ethereum

2. 1 スロットとエポック
Ethereum は，PoS 型ブロックチェーンとして，Gasper

と呼ばれる合意プロトコルを採用している [3]．Gasper は，
Casper FFG (Friendly Finality Gadget) による最終確定機構

と，LMD GHOST (Latest Message Driven Greediest Heav-

iest Observed SubTree) によるフォーク選択規則を組み合わ
せたプロトコルである．Gasper では，時間の概念をスロット
(Slot)およびエポック (Epoch)という 2つの階層的な単位で定
義している．スロットは，ブロック生成が行われる最小の時間
単位であり，Ethereum では 1 スロットが 12 秒間に設定され
ている．各スロットの開始時には，全バリデータの中から 1名
のブロック提案者が擬似乱数的に選出され，新しいブロックの
作成およびネットワークへの公開権限が与えられる．なお，選
出されたバリデータの通信障害やオフライン状態などの要因に
より，スロット内でブロックが生成されない場合も存在する．
エポックは，32スロット (約 6.4分)をひとまとめにした単位

である．エポックは，ネットワークのファイナリティ (最終確定
性)を判断するための重要な区切りとして機能する．具体的に
は，各エポックの境界にチェックポイントが設定され，バリデー
タによる投票 (Attestation) を集計することで，台帳の正当性
が検証・確定される．各バリデータはエポックの開始時に，そ
のエポック内の特定のスロットを担当する委員会 (Committee)

へと割り振られる．各スロットには，1名のブロック提案者と，
複数の検証者 (Attester)で構成される委員会が配置される．1

スロットあたりに編成される委員会の数はネットワーク全体の
アクティブバリデータ数に応じて動的に変化し，最大で 64委員
会まで拡張される．プロトコル上の設計により，有効な全バリ
データは，1エポックの間に必ず 1回，指定されたスロットで
の検証作業を行うよう割り当てられる．このため，1エポック
全体で検証に参加するバリデータの総数は，その時点でのネッ
トワークにおけるアクティブバリデータ総数と等しくなる．
2. 2 ブロック投票
Ethereumの PoSでは，一定量の暗号資産を預託したノード

がバリデータとして合意形成プロセスに参加する．時間はス
ロットおよびエポックの単位で管理され，各バリデータはエ
ポックごとにブロック提案とブロック投票 (Attestation) とい
う 2つの重要な役割を担う．選出された提案者は，フォーク選
択規則である LMD GHOSTに基づき，最も正当とされる親ブ
ロックの先端に新たなブロックを生成・接続する．委員会に属
する各バリデータは，自身の観測した最新の状態に基づき，正
当なチェーンの先端を支持する投票を行う．本プロトコルの特
徴は，この投票が単なるフォーク選択 (LMD GHOST)だけで
なく，チェックポイント間の合意形成 (Casper FFG)としての
役割も同時に果たす点にある．これにより，フォークの解消と
最終確定のプロセスが並行して進行する．
エポックの境界に位置するブロックに対し，全ステーク量の

2/3以上の投票が集まった状態を正当化 (Justification)と呼ぶ．
正当化は，そのブロックが正当な履歴の候補としてネットワー
ク内で概ね合意されたことを意味する．2/3以上のステークに
よる支持が必要であるため，競合する異なるブロックを同時に
正当化させるには，バリデータによる大規模かつ共謀的な不正
(スラッシングの対象)が不可欠となる．正当化されたブロック
は，次段階である最終確定に移行するための必須条件となる．
なお，投票数が 2/3に満たない場合，そのブロックは正当化さ
れず，最終確定へのプロセスも停止する．これは，不完全な合
意状態での確定を回避し，一貫性を保護する安全性を優先した
設計を反映したものである．
Gasper FFG においては，ある正当化されたブロックに対

し，後続のエポックでさらに 2/3以上の支持 (Super Majority

Linkの形成)が得られた際に，そのブロックは最終確定 (Final-

ization)される．最終確定されたブロックはプロトコルが正常
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に機能している限り，将来にわたって覆されることがない．ま
た，確定済みの履歴を改ざんしたり，異なるブロックを二重に
確定させたりするには，全ステークの 1/3以上がスラッシング
を伴う不正行為をする必要があり，攻撃コストが極めて高く設
定されている．2/3以上の投票が得られないブロックは，最終
確定には至らず，確率的な正当性を持つ候補ブロックとして扱
われるに留まる．
2. 3 フ ォ ー ク
ブロックチェーンにおけるフォークとは，同一の親ブロック
から複数の異なる子ブロックが生成され，ブロックチェーンが
分岐される現象を指す．フォーク発生確率は以下の通りである．

F (t) = 1− e−tprop/tB (1)

ここで tprop はブロック伝搬時間，tB はブロック生成間隔を
表している．ブロック伝搬時間は生成されたブロックがネット
ワーク内のすべてのノードに伝搬するまでに要する時間であり，
ブロック生成間隔は新しいブロックが生成される間隔を指して
いる．Ethereum の PoS 設計における最大の特徴は，フォー
ク選択と最終確定という 2 つの異なる役割を分離・統合して
いる点にある．フォーク選択規則には LMD GHOST (Latest

Message Driven Greediest Heaviest Observed SubTree) が採
用されている．これは，ネットワーク内で一時的にフォークが
生じた際，各バリデータの最新の投票に基づき，最も多くの重
みが蓄積されたチェーンを正当と見なす規則である．ここで各
ブロックの累積重みは，そのブロックおよびその子孫ブロック
を支持して投票したバリデータの合計ステーク量として算出さ
れる．図 1に示すように，LMD GHOSTでは，以下の手順で
正当チェーンを決定する．

（ 1） ジェネシスブロックから開始
（ 2） 子ブロックが複数存在する場合各子ブロックのサブツ
リーの重みを比較する
（ 3） 最も重みの大きい子ブロックを選択し, そこから再帰
的に同様の処理を行う
（ 4） 最終的に到達したブロックをチェーンの先頭とする

図 1 正当チェーンの決定方法

LMD GHOSTは現時点で最も支持されているチェーンを特
定するが，これのみでは過去のブロックが後に覆る可能性を完
全に排除できない．そこで Ethereumでは，Casper FFGを導
入することで，履歴の不可逆的な確定を実現している．
Casper FFGでは，エポックの境界にあるブロック (チェッ

クポイント)に対し，全ステークの 2/3以上の投票が集まった
際に正当化が行われる．さらに，正当化されたブロックが次の
エポックにおいて再び 2/3以上の支持を得ることで最終確定に
至る．この二段階のプロセスにより，ネットワークの安全性と
履歴の不変性が保証される．

3. 関 連 研 究
3. 1 ステークの集中
PoSでは，ブロック提案やブロック投票に対する報酬が，原

則としてステーク量に比例して分配される．新規ブロックの生
成の際，以下の式に従ってバリデータ iに対するインセンティ
ブ Ii を付与する．

Ii = si (2)

ここで si はバリデータ i が保持するステークを意味する．
PoSプロトコルではブロック生成機会および投票の重みがいず
れも si に比例して決定される．この設計は，ステーク保有量
に比例して期待報酬が増大する構造を内包している．獲得され
た報酬がステークへ再投資されることで，当該バリデータの次
期報酬獲得確率はさらに上昇し，長期的には初期段階で多額の
資産を保有する者が支配的な地位を維持・強化する正のフィー
ドバックが形成される．ステークの偏りは経済的格差に留まら
ず，合意形成プロセスの分散性にも直接的な悪影響を及ぼす．
高ステーク保有者は，少数であってもフォーク選択規則や最終
確定プロセスにおいて決定的な影響力を行使できる．これによ
り，特定のバリデータの意向がネットワーク全体の合意結果
を左右するリスクが高まる．一方で，ステーク量の少ないバリ
データは投票の寄与度が限定的であり，ブロック提案の機会も
稀少である．報酬の蓄積速度が遅いため，相対的な影響力が向
上しにくく，ネットワーク内での地位が固定化されやすい．こ
のようなステーク格差の拡大は，Nakamoto係数の低下を招き，
ブロックチェーンの根幹である分散性を損なう懸念がある．し
たがって，ステーク量以外の指標を組み込んだインセンティブ
設計や，小規模バリデータの参画を促すメカニズムの構築が重
要な研究課題となっている．
少数のバリデータによる意思決定の支配を抑制するため，

ステーク量を非線形に変換して報酬や重みを算出する手法が
提案されている．他研究では，少数の高ステークバリデータ
が合意形成に対して過度な影響力をもつ問題に対して，非線
形なステーク重み付け方式である Square Root Stake Weight

(SRSW) [6]および Logarithmic Stake Weight (LSW) [8]を提
案している．[6]では，バリデータの保有するステーク量を非線
形に再調整し，ステークの分配を是正することにより，少数の
バリデータがネットワークの意思決定を支配する状況を抑制し
ている．[8]では，ステーク量に対して対数的なインセンティブ
を付与することで，過大なステークを持つバリデータの支配力
を抑制し，報酬の成長速度を緩やかにする．LSWモデルでは，
次式でインセンティブを付与する．

Ii = log si (3)

3. 2 Sybil攻撃
Sybil 攻撃とは，分散システムにおいて単一の攻撃主体が大

量の偽装ノード (Sybilノード)を作成し，それらが独立した複
数の参加者であるかのように振る舞う攻撃手法である [9]．本攻
撃の主なプロセスは，ネットワーク内の情報流通の支配にある．
攻撃者は特定の領域に多数の Sybilノードを配置し，外部から
は個別の参加者に見えるようこれらを集中的に制御する．誠実
なノードがこれらの Sybilノードによって周囲を包囲された場
合，正常な情報の伝達が阻害される．攻撃者は正当なブロック
やトランザクションの転送を意図的に放棄することや他ノード
の接続先を攻撃者のノードのみにすることでネットワークの状
態を誤認させるなどの操作をする．誠実なノードの通信相手が
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攻撃者の支配下にあるノードのみに限定されると，当該ノード
は真の合意形成プロセスから孤立し，攻撃者が捏造した情報を
正当なものとして受容するリスクが生じる．
Sybil攻撃は，その動機に基づいて 2タイプに分類される [11]．

複数の偽装ノードを運用することで，ネットワークから得ら
れる報酬の不正な増大を主目的とする利得最大化型 (Utility-

maximizing) と，投票権やブロック提案機会を掌握するため，
より多くの委任 (Delegation) を獲得し，ガバナンスへの支
配力を高めることを目的とする．影響力最大化型 (Influence-

maximizing)の 2つが存在する．PoSにおいて，中央集権化を
抑制するために個々のバリデータのステークが与える影響力を
弱める設計を導入すると，新たな脆弱性が生じる．ステークの
影響力が均等化されることで，攻撃者が自身の保持するステー
クを細分化し，多数のバリデータを生成して攻撃を行う Sybil

攻撃の実行コストが低下するためである．このステーク集中と
Sybil攻撃のトレードオフに対し，先行研究が存在し，Binfeng

らの手法 [7]では報酬分配メカニズムおよびステークの委任構
造を再設計する手法を提案している．Bappy らの手法 [12] で
はマルチエージェント強化学習（MRL）を応用したコンセンサ
スアルゴリズムMRL-PoS+を提案している．

4. 提 案 方 式
4. 1 概 要
本節では，提案する PoSコンセンサスアルゴリズムの詳細に

ついて述べる．本提案方式は，従来の PoS システムと比較し
て，インセンティブ設計と投票重み付けの変更，およびクラス
タリングを用いた Sybil攻撃者検知メカニズムの導入という 3

つの主要な特徴を有する．以下にそれぞれの詳細を述べる．
4. 2 インセンティブ及び投票重みの算出式
本方式では，バリデータの報酬計算およびネットワークへの

影響力を決定するブロック投票の重みについて，新たな算出式
を導入する．インセンティブの計算式は以下である．

Ii =
γα
i√
δ
× C (4)

ここで，γiは対象バリデータ iのステーク量，δは全バリデー
タの総ステーク量，C は定数項を表す．インセンティブ式にお
ける重みは (α)は，以下の式によって決定する．

α =
1

1 + β × γi
δ

(5)

ここで，βは重みの調整係数である．この式により，バリデー
タのステーク占有率 (γi/δ)に応じて動的に投票の重み付け係数
αが変動する仕組みとなっている．
4. 3 クラスタリングを用いた Sybil攻撃者の検知
本提案方式の 3 つ目の特徴は，Sybil 攻撃者を動的に検知・
排除する手法である．本手法では，バリデータの特徴量を用い
たクラスタリングを行い，特定の挙動を示すクラスタを攻撃者
として識別する．
（ 1） 特徴量の定義と投票の偏り
クラスタリングに用いる特徴量 (ラベル)には，バリデータの
過去のブロック生成数およびフォーク発生時における投票の偏
りの 2点を設定する．ここで投票の偏りとは，ネットワーク内
でブロックチェーンのフォークが発生し，その正当化のために
投票が行われる際，投票を行うバリデータとその投票先ブロッ
クを生成したバリデータとの関係性における偏重度合いと定義
する．
（ 2） 攻撃者の検知ロジック

正常なバリデータと Sybil攻撃者では，ブロック投票の行動
原理が以下のように異なると想定される．
・正常なバリデータ: ブロック生成者のステーク量や過去の

ブロック生成履歴といったプロトコル上の正当性に基づき投票
先を選択するため，特定の生成者に固執することなく分散的な
投票行動を取る．
・Sybil攻撃者: 複数の偽バリデータを用い，自身 (攻撃者の
メインノード)が生成したブロックに投票を集中させることで
正当化を試みる．その結果，特定の生成者に対する投票の偏り
が顕著に表れる．
本手法では，これらの特徴量を基にバリデータをクラスタリ

ングし，生成されたクラスタの中からステーク量が低く，かつ
投票の偏りが最も強いクラスタを抽出することで，Sybil攻撃
者を検知する．

5. 性 能 評 価
5. 1 評 価 条 件
提案方式を計算機シミュレーションにより評価する．また，

提案方式における評価条件を以下に示す．バリデータ数は 128

とし，1ラウンドごとのブロック生成数 3,200で，合計で 1,000

ラウンド行う．また，インセンティブ式における C を 0.02と
し，β を 0.9とする．
5. 2 新規参入者ステーク
図 2に，ネットワーク全体のバリデータのうち新規参入者が

10%を占める環境を想定し，新規参入者が 3,200個のブロック
生成によって得られるステーク量 (ETH) の推移を従来手法，
提案手法，LSWのそれぞれで示す．
提案手法は従来手法及び LSW と比較して，最も顕著なス

テーク量の増加を示している．一方，従来手法と LSWの推移
はほぼ同等であり．提案手法との間に大きな差が生じる結果と
なった．これらの推移の差は，各手法におけるインセンティブ
設計の違いに起因している．従来手法はインセンティブ式が保
有ステーク量に比例して報酬が増加する設計となっている．こ
のため，初期ステーク量が少ない新規バリデータにとっては獲
得できる報酬が限定的となり，結果として図 2に示すような緩
やかな増加にとどまっている．提案手法では，保有ステーク量
が低いバリデータほど，より高いインセンティブを獲得できる
設計を採用しているため，ステーク量が大きく増加している．

図 2 新規参入者のステーク量の時間変化

5. 3 Nakamoto係数
本評価では，システムの分散性を定量化する指標として
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Nakamoto係数 (Nakamoto Coeffcient)を用いる．Nakamoto

係数とは，システムに対して妨害や不正操作を企てる攻撃者
が存在すると仮定した際，その攻撃を成立させるために必要
な最少のノード数を算出したものである [13]．この値が大き
いほどシステムの制御を奪うために多くのノードを占有する
必要があることを意味し，分散性が高いと評価される．本評
価では Nakamoto Coefficient for Liveness (NL)と Nakamoto

Coefficient for Safety (NS) から分散性を評価する．NL はシ
ステムを阻害，ブロック生成を停止・妨害させるために必要な
最小のノード数を示す指標である [14] [16]．この値が低いほど
少数のノード離脱や共謀によってネットワークが停滞するリス
クが高いことを示唆し，全バリデータのステーク合計の 1/3以
上を占めるために必要な最小の集合 Lの要素数として，次式で
定義される．

NL = min{|L| | L ⊆ N,
∑
i∈L

wi ≥
1

3

m∑
i=1

wi} (6)

ただし wi はバリデータの保有ステークを示す．
NS はシステムの安全性を脅かし，ブロックの改ざんや二重
支払いなどを可能にするために必要な最小のノード数を示す指
標である．これは，コンセンサスアルゴリズムにおける信頼の
境界を定量化したものであり，全バリデータのステーク合計の
2/3以上を占めるために必要な最小の集合 S の要素数として次
式で定義される [15] [14]．

NS = min{|S| | S ⊆ N,
∑
i∈S

wi ≥
2

3

m∑
i=1

wi} (7)

システムの分散性を評価するため，Nakamoto coefficientを
指標として用い，従来手法，提案手法，および LSWの 3手法
を比較した．評価結果を図 3に示す．Nakamoto coefficientの
値は，LSW，提案手法，従来手法の順に高く，LSWが最も優
れた分散性を示している．従来手法は他手法に比べ最も低い
係数となった．これは，ネットワークを操作するために必要な
ノード数が少なく，少数のノードによって攻撃が成立し得るこ
とを示している．その要因として，従来手法は一部のステーク
を多く保有するバリデータに報酬が集中する設計であるため，
ステーク量の偏りが拡大し，結果として中央集権的な構造にな
ることが考えられる．提案手法は従来手法と比較して係数が向
上している．これは，本提案における保有ステーク量が低いバ
リデータに対してより高いインセンティブを付与しているか
らである．この手法によりノード間のステーク格差が縮小し，
ネットワーク全体の分散性が向上したと考えられる．LSWは
インセンティブ式に非線形な重みづけを採用しており，これが
ステークの分散を促進している．その結果，攻撃に必要な最小
ノード数が最大化され，Nakamoto coefficientが増加したと考
えられる．

図 3 nakamoto 係数の方式間の比較

5. 4 フォーク発生確率
図 4に，攻撃者割合が 5%，10%，20%においての従来手法，

提案手法，LSW の有効フォーク発生確率の比較結果を示す．
いずれの攻撃者割合においても，提案手法は従来手法および
LSWと比較して，フォーク発生確率が最も低い結果となった．
一方，従来手法と LSWの間には有意な差は見られず，ほぼ同
様の発生確率を占めている．提案手法では，後述するブロック
提案バリデータの選出確率において，新規参入者が選出される
確率を適切に抑制する設計を導入している．これにより，攻撃
者がフォークを発生させる機会自体が低下し，ネットワーク全
体の安全性が高められている．
従来手法と LSWにおいては，ブロック提案者の選出アルゴ

リズムにおいて新規参入者と既存ノードの間で選出確率に大き
な差が生じない設計になっている．そのため，提案手法のよう
なフォーク抑制効果が働かず，結果として両手法は同程度の高
いフォーク発生率にとどまっていると考えられる．

図 4 フォーク発生確率 (攻撃者割合 5%, 10%, 15%)

5. 5 新規参入者選出確率
図 5に示す通り，提案手法は従来手法及び LSWと比較して，

新規参入者の選出確率が極めて低く抑制されている．一方，従
来手法と LSWの間には有意な差は見られない．
従来手法と LSWのグラフがほぼ一致しているのは，両手法

において新規参入者のブロック提案バリデータ選出確率を決定
する数式が共通しているためである．提案手法は，前述の通り
ステーク量の低いバリデータに対して高いインセンティブを付
与し，ネットワークの分権化を促進する．しかし，その一方で
保有ステーク量が低いバリデータほど，ブロック提案者として
の選出確率を低減させるという選出抑制アルゴリズムを導入し
ている．この設計により，新規参入バリデータがステークを蓄
積するまでの期間は，ブロック提案の機会を制限している．

図 5 新規参入者選出確率 (新規参入者割合 5%, 10%, 15%)
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5. 6 攻撃者検知率
ネットワーク内の攻撃者割合を 10% に固定した条件下にお
いて，新規バリデータの割合によるシナリオ別に提案手法を用
いた際の攻撃者検知率を図 6 に示す．本実験では，新規参入
バリデータの割合が異なる 3つのシナリオ (シナリオ A: 17%，
シナリオ B: 41%，シナリオ C: 69%)において，提案手法の有
効性を検証した．シナリオ Aおよびシナリオ Cでは 100%の
検知率となっており，シナリオ Bにおける検知率は約 80%と
なっており，約 20% の正常バリデータが攻撃者クラスタとし
て誤分類される結果となった．シナリオ Aでは，新規バリデー
タが多く存在するため，正常なバリデータの投票先が分散しや
すい状況にある．この環境下では，攻撃者の特徴である特定の
ブロックへの集中的な投票行動が相対的に顕著となり，攻撃者
の特徴を明確に抽出できたことが検知率の向上に寄与したと考
えられる．
またシナリオ C においても，新規バリデータの割合が非常
に高く，フォーク発生時に新規バリデータが生成したブロック
が選択されやすい環境にある．これにより正常バリデータの投
票先がさらに分散する傾向が強まり，攻撃者の投票集中がより
際立つ結果となった．一方，シナリオ Bで約 20%の誤検知が
発生した要因は，ネットワーク内のバリデータの構成バランス
に起因する．本シナリオでは，ブロック生成率の低い新規バリ
データと，信頼性が高く投票が集中しやすい高ステークバリ
データがそれぞれ一定数混在している．この状況下では，一部
の正常な新規バリデータの投票挙動が，攻撃者グループの挙動
と類似しているため，クラスタリングの過程で攻撃者側に分類
されたものと考えられる．

図 6 攻撃者検知率 (攻撃者割合 10%)

6. ま と め
本論文では，PoS型ブロックチェーンにおいて，ステークの
中央集権化が発生する課題に対し，新規参入バリデータがス
テークを獲得しやすいインセンティブ式とブロック投票の際の
投票の重み式と，ブロック投票においてクラスタリングを行う
ことによって Sybil攻撃者を検知する手法を提案した．数値評
価において，新規参入者のステーク推移は，提案手法は従来手
法と LSWに比べてステーク量が最も増加した一方，従来手法
と LSWはほぼ同等のステーク量推移であった．nakamoto係
数による safetyと livenessの評価では，LSWの値が最も高く
ブロック生成を停止、改ざんするために必要な最小ノード数が
多く，分散性が最も高い．提案手法は分散性が，従来手法より

も高く LSWよりは低い．攻撃者検知率においては，高ステー
クバリデータが多く存在する正常バリデータの投票先が分散し
やすい状況においては攻撃者のブロック投票行動が他バリデー
タの投票行動と明確に分けられ，攻撃者検知率が上昇する．新
規参入者が多いような状況においては，フォーク発生時に生成
されるブロックが新規バリデータのものであることが多くなる
ため，正常バリデータの投票先が分散し，攻撃者の投票行動が
他に比べて別の行動として抽出され，検知率が上昇する．今後
は検知率の低い攻撃者割合，シナリオを基に Sybil攻撃の攻撃
実行率を評価する予定である．
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