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Abstract The rapid expansion of video streaming and cloud services has resulted in a substantial increase in in-
ternet traffic volume. Effective and stable utilization of limited network resources requires robust congestion control
mechanisms. As a core function of TCP, congestion control mitigates packet loss and delay by dynamically adjust-
ing transmission rates. Traditionally, loss-based algorithms such as TCP-Reno (Reno) and CUBIC-TCP (Cubic)
have been widely adopted, relying on packet loss detection to regulate transmission. More recently, delay-based
algorithms like BBR (bottleneck bandwidth and round-trip propagation time), developed by Google, have gained
significant traction. When congestion control algorithms with differing operational principles coexist on the same
link, allocation of transmission bandwidth can become skewed, favoring certain flows and resulting in fairness is-
sues. Previous studies on congestion control fairness have predominantly utilized a Dumbbell topology, which models
only a single network link, thereby limiting the evaluation of more complex, multi-link paths. This study assesses
throughput fairness among BBR, Reno, and Cubic in both Dumbbell and multi-hop topologies. The findings reveal
distinct trends between these topologies, demonstrating that single-link evaluations do not adequately capture the
influence of round-trip time (RTT) differences on bandwidth distribution. These results underscore the necessity
for a new fairness evaluation framework that incorporates flow interactions in multi-hop environments, as well as
the effects of delay and buffer size.
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4 Throughput Comparison in dumbbell topology
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5 Throughput Comparison in 2-hops topology
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