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あらまし 量子計算資源を複数ノードへ分散配置する分散型量子演算（DQC）は量子ビット規模の制約を克服する
有力な手法である．しかしノード間のエンタングルメント資源が有限なため，要求量に応じた動的資源配分が計算性
能を大きく左右する．特に，複数アプリケーションが同時実行される環境では，量子回路要求とネットワーク資源需
要が時間変動するため，効率的な資源管理が課題となる．そこで本稿では処理時間の短縮を目的として，DQCネッ
トワークにおける要求受入と論理回路割当の最適化方式を提案する．従来手法では静的状況を前提とし，局所ルール
ベースで最適化するため動的要求下では性能劣化が起こり得る．そこで本稿では，強化学習により状況に応じて最適
な割り当て判断を逐次学習させるアプローチを採用する．
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Abstract Distributed quantum computing (DQC), which distributes quantum computing resources across multiple nodes, is
a powerful approach to overcoming the limitations imposed by the scale of qubits. However, since entanglement resources
between nodes are finite, dynamic resource allocation based on demand significantly impacts computational performance.
Particularly in environments where multiple applications run concurrently, quantum circuit demands and network resource
requirements fluctuate over time, making efficient resource management a critical challenge. Therefore, this paper proposes
an optimization method for request acceptance and logical circuit allocation in DQC networks, aiming to reduce processing
time. Conventional methods assume static conditions and optimize using local rule-based approaches, potentially leading
to performance degradation under dynamic demands. Consequently, this paper adopts an approach that sequentially learns
optimal allocation decisions based on the situation using reinforcement learning.
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1. ま え が き
近年，量子計算機の発展に伴い，単一の量子計算機では処理が
困難な大規模量子回路を，複数の量子処理装置（QPU: Quantum
Processing Unit）を協調させて実行する分散量子演算（DQC:
Distributed Quantum Computing）が注目されている．DQC環境
では，QPU間で量子もつれを生成しながら計算を進める必要が
あり，計算資源の割当や実行順序の決定が性能に大きく影響す
る [1]．しかし，実際の DQC環境では，量子回路要求がオンラ
インに到着し，各 QPUの利用可能状況や量子メモリのコヒー
レンス時間が時間とともに変化するため，あらかじめ最適なス

ケジュールを決定することは困難である．さらに，非局所量子
操作に伴う量子通信遅延や忠実度劣化を考慮する必要があり，
従来の静的スケジューリング手法や単純なヒューリスティック
では十分な性能を得ることが難しい [2]．
本稿では，このような DQC環境におけるタスク割当問題に対

して，強化学習を用いた動的スケジューリング手法を提案する．
提案手法では，分散量子回路を論理タスクに分割しタスク間の
依存関係を有向非巡回グラフとして表現することで，逐次的な
意思決定を可能とする．また，未完了ジョブの待ち時間および
量子操作に伴う忠実度劣化を考慮した報酬関数を設計し，長
期的な処理性能の向上を目指す．性能評価として，シミュレー
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ション実験により，提案手法が従来手法と比較し，平均処理時
間および処理可能ジョブ数の観点から有効であることを示す．

2. 関 連 研 究
2. 1 分散量子演算における相互接続ネットワークのための

リソース管理と回路スケジューリング
Rahramiらは，複数の量子プロセッサ（QPU）が量子ネット
ワークによって接続された DQC環境を対象とし，量子回路の
実行要求をネットワーク資源と計算資源の制約下でどのように
割り当て・実行するかという問題を定式化している [3]．量子
回路を構成するゲート操作を局所ゲートと非局所ゲートに分類
し，特に非局所ゲートの実行に必要となるエンタングルメント
生成および通信遅延を考慮したスケジューリング手法を提案し
ている．ネットワーク上のリンク容量やエンタングルメント生
成率といった物理的制約を明示的にモデル化し，回路全体の実
行時間（makespan）を最小化することを目的としている点が特
徴である．
一方で，本論文では回路要求は事前に既知であり，動的に到
着する要求や不確実性を伴う環境は考慮されていない．また，
最適化は主としてルールベースまたは数理最適化に基づいて行
われており，環境変動に適応的に振る舞う学習的手法は導入さ
れていない．そのため，要求が動的に発生する DQC環境にお
いては，柔軟性の面で課題が残る．

2. 2 分散量子演算のための最適確率的資源配分
Ngoenriangらは，量子計算要求の到着や量子リンクの状態が
確率的に変動する状況を想定し，長期的な性能指標を最適化す
る資源割り当て戦略の設計を提案している [4]．量子計算要求
を確率過程としてモデル化し，エンタングルメント資源や計
算資源の割り当てをマルコフ決定過程（MDP: Markov Decision
Process）として定式化している．その上で，期待コスト（例え
ば遅延や失敗確率）を最小化する最適方策の構造を理論的に解
析し，確率的環境下でも性能保証が可能であることを示してい
る点が本稿の特徴である．
しかしながら，この論文で扱われているモデルは比較的抽象
化されており，具体的な量子ネットワークトポロジや回路レベ
ルの実行時間までは詳細に考慮されていない．また，最適方策
の導出にはモデルの正確な事前知識が必要であり，環境モデル
が不完全または時間的に変化する場合への適応性には課題が
残る．

3. 提 案 方 式
3. 1 概要と特徴
本稿では，DQC要求を既存研究に基づいて細粒度タスクへ
分割し，各タスク間の依存関係から重み付き有向非巡回グラフ
（DAG: Directed Acyclic Graph）を生成する．各 DAGノードは，
物理制約に基づいて実行可能な QPUの集合を持つ．強化学習
は，複数の DAGが同時に存在する環境において，実行可能な
DAG ノードおよびその実行先 QPU を選択し，QPU 内の実行
順序を動的に決定する．DQCでは大規模な量子回路を複数の
QPU に分割して実行するため，非局所ゲートの実行やエンタ
ングルメント生成を伴う複雑な依存関係が発生する．これによ

り，ジョブの実行時間は単純な回路深さではなく QPU間通信
や待ち時間に大きく依存する．
提案手法の特徴は，DQCジョブから実行依存関係を表す DAG

を自動生成する機構と，その DAGに基づいて強化学習により
資源割当および実行判断を最適化する点にある．量子コンパイ
ラによって分散化された量子回路を入力とし，各 QPU上で実
行される量子プログラムを自動生成する．強化学習エージェン
トはシステム状態として各 QPUの負荷状況，量子ネットワー
クの混雑度，生成された DAGの構造情報を観測し，QPUの割
当やジョブの実行順序に関する行動を選択する．

3. 2 処理の流れ
本稿では，DQCにおける実行管理問題に対し，既存研究で提

案されているタスク分割手法 [5]と，強化学習による動的資源
配分を組み合わせた設計を採用する．ただし，量子ビットの局
在性や非局所ゲートに伴う物理制約を考慮し，強化学習が担う
意思決定の範囲を明確に制限することで実行可能性とモデルの
整合性を保証する．
まず，DQCジョブがシステムに到着すると，既存研究に基づ

き，量子回路は細粒度の論理的タスクへと分割される．この分
割には，タスク間の類似性や通信量を考慮したクラスタリング
手法が用いられ，各クラスタは量子回路中の意味的にまとまり
のある処理単位を表す．
次に，各クラスタに含まれるタスク間の依存関係を解析し，

その結果をもとに DAGを自動生成する．この DAGは，タスク
の実行順序に関する制約を明示的に表現するものであり，ジョ
ブ内部において守られるべき因果関係のみを表す．したがって，
この段階では実行順序の最適化や資源割当は行わず，DAG生成
は決定的な処理として実施される．生成された DAGに含まれ
る各ノードは，量子ビットの配置や非局所ゲートの実行可能性
といった物理的制約に基づき，実行可能な QPUの集合を持つ
ものとして定義される．
強化学習は，この制約付き環境のもとで実行管理を担当する．

具体的には，強化学習エージェントは複数の DAGが同時に存
在する状況において，現在実行可能な DAGノードの中から次
に実行するノードを選択し，さらにそのノードを実行可能 QPU
の集合の中からどの QPU に割り当てるかを決定する．また，
同一 QPU上で複数のノードが待機している場合には，それら
の実行順序についても強化学習によって動的に決定する．この
ように，本設計では DAGによって「どのタスクがどの順序で
実行可能か」という制約を明示化し，強化学習によって「複数
ジョブ間で限られた QPU資源をどのように共有するか」を最
適化する．

3. 3 DQC要求の定義
提案手法の中で用いる記号を表 1にまとめる．式 (1)に示す

ように，時刻 𝑡 に到着する DQC要求 𝐽 は分散量子回路 C，使
用される論理量子ビット集合 Q，非局所ゲート（CatEnt）情報
L，ジョブ到着時刻の情報 𝑡arr を有する．

𝐽 = (C,Q,L, 𝑡arr) (1)

ただし，C は分散量子回路であり，以下のようにゲートの列と
して表される．
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表 1 提案手法において用いる主な記号の一覧
記号 説明
𝐽 DQC要求（ジョブ）を

表す．分散量子回路や
量子ビット集合などを
含むタプル

C 量子ゲート列として表
現される分散量子回路

Q DQC要求 𝐽において使
用される論理量子ビッ
トの集合

L 非局所ゲート（CatEnt）
の情報

𝑡arr DQC要求 𝐽の到着時刻
𝑔𝑖 量子回路 𝐶 を構成する

𝑖 番目の量子ゲート
type𝑖 1Q（単一量子ビットゲー

ト），2Q（2量子ビット
ゲート），CatEnt（分散
操作）のいずれかを意
味するゲート 𝑔𝑖 の種類

qubits𝑖 ゲート 𝑔𝑖 が作用する量
子ビットの集合

loc𝑖 ゲート 𝑔𝑖 の実行に関与
可能な QPUの集合

𝜏𝑘 同一QPU上で連続して
実行される量子ゲート
列におけるを表す 𝑘 番
目の論理タスク

𝑇 DAGのノード集合とし
て用いられる論理タス
クの集合

P(𝑥 ) ゲート 𝑥，もしくは論
理タスク 𝑥 が実行可能
な QPUの集合

|𝑄cand | 論理タスク 𝜏𝑘 が必要と
する量子ビット数

𝑄th 1つの論理タスクが単一
QPUに割り当て可能で
あることを高い確率で
保証するための保守的
な上限値

𝐺 = (T , 𝐸 )論理タスクをノードと
する有向非巡回グラフ
（DAG）

記号 説明
𝐸 論理タスク間の依存関

係を表すエッジ集合
𝑄 (𝜏𝑘 ) 論理タスク 𝜏𝑘が使用す

る量子ビットの集合
𝑡 離散時間ステップを表

すインデックス
𝑠𝑡 時刻 𝑡 における強化学

習環境の状態
𝐽active
𝑡 時刻 𝑡 においてシステ

ム内で処理中のDQC要
求の集合

𝑇
ready
𝑡 時刻 𝑡 において実行可

能状態にある論理タス
クの集合

QPU𝑡 各QPUの次回使用可能
時刻を要素とするベク
トル

𝐷decoh
𝑡 各QPUにおける量子メ

モリの残存コヒーレン
ス時間を表すベクトル

𝑎𝑡 実行する論理タスクと
割り当て先QPUの組を
意味する，時刻 𝑡 にお
ける行動

(𝜏, 𝑞) 論理タスク 𝜏 を QPU 𝑞
に割り当てる行動 𝑎𝑡 の
具体的内容

𝑟𝑡 時刻 𝑡 における強化学
習エージェントの報酬

𝛼, 𝛽, 𝛾 報酬関数の重み係数
𝑊𝑗 (𝑡 ) 時刻 𝑡におけるDQC要

求 𝑗 の待ち時間
𝑇𝑡 時刻 𝑡 において評価対

象となる論理タスクの
集合

Δ𝐹𝜏 論理タスク 𝜏 の実行に
伴う忠実度の減少量

𝐹𝜏 論理タスク 𝜏 に対応す
る量子状態の忠実度

𝐹th 許容される忠実度の下
限値（忠実度閾値）

𝐼𝐼 条件が真のとき 1，偽の
とき 0を返す指示関数

C = (𝑔1, 𝑔2, ..., 𝑔𝑛) (2)

各ゲート 𝑔𝑖 は 𝑡𝑦𝑝𝑒𝑖（1Q（単一の量子ビットに対して作用す
る量子ゲート）, 2Q（2つの量子ビットに同時に作用する量子
ゲート）, CatEnt（異なる QPUに配置された量子ビット間で 2Q
を実現するための分散操作）），𝑞𝑢𝑏𝑖𝑡𝑠𝑖（使用量子ビット），𝑙𝑜𝑐𝑖

（実行に関与する QPU）で表す．

𝑔𝑖 = (𝑡𝑦𝑝𝑒𝑖 , 𝑞𝑢𝑏𝑖𝑡𝑠𝑖 , 𝑙𝑜𝑐𝑖) (3)

3. 4 論理タスクへの分割
本稿では，量子回路を構成するゲート列を順に走査し，単

一の QPU上で無理なく実行できる範囲を一つの論理タスクと
してまとめる．論理タスク 𝜏 は同一 QPU上で実行され，外部
QPUとの同期を必要としない連続ゲート列として定義する [6]．
次の最大部分列として定義する．

𝜏𝑘 = (𝑔𝑖 , 𝑔i+1, ..., 𝑔 𝑗 ) (4)

ただし，QPU一貫性と同期不要性を満たし，CatEntの通信制御
を含む処理は，必ず単独の論理タスクとして切り出す設計とす
る．また，論理タスクの必要量子ビット数が一定以上を超えた
とき，新しい論理タスクを作成するようにする．論理タスクに
分割するアルゴリズムを Algorithm1に示す．

Algorithm 1論理タスク分割（量子ビット数制約付き）
Require: Quantum circuit C = {𝑔1, 𝑔2, . . . , 𝑔𝑁 }
Ensure: Logical task set T

1: T ← ∅
2: Initialize empty task 𝜏
3: Initialize empty qubit set 𝑄𝜏
4: for 𝑖 = 1 to 𝑁 do
5: 𝑄cand ← 𝑄𝜏 ∪𝑄 (𝑔𝑖 )
6: if 𝜏 is empty then
7: 𝜏 ← {𝑔𝑖 }
8: 𝑄𝜏 ← 𝑄 (𝑔𝑖 )
9: else if 𝑔𝑖 is not CatEnt and P(𝑔𝑖 ) = P(𝜏 ) and |𝑄cand | ≤ 𝑄th then

10: 𝜏 ← 𝜏 ∪ {𝑔𝑖 }
11: 𝑄𝜏 ← 𝑄cand

12: else
13: T ← T ∪ {𝜏}
14: Insert synchronization boundary
15: 𝜏 ← {𝑔𝑖 }
16: 𝑄𝜏 ← 𝑄 (𝑔𝑖 )
17: end if
18: end for
19: T ← T ∪ {𝜏}
20: return T

3. 5 DAGの自動生成
DAG生成は既存研究の回路依存関係解析に基づく [7]．本研

究ではそれを動的 RL環境に適合させるため，論理タスク粒度
に再設計した．DAG生成の入力として，1つの DQCジョブに
対し必要論理量子ビット数，量子ゲート列（1量子ビットゲー
ト，2量子ビットゲート，分散 CNOT（CatEnt）），各ゲートが作
用する量子ビットの集合が与えられる．DAGの生成では，量子
ビットの使用関係に基づいて依存関係を付与することで，有向
非巡回グラフを構築する．このとき，量子回路の時間的な実行
順をそのまま直列に並べるのではなく，並列実行可能な操作は
同一レベルに配置可能な構造として表現する点が特徴である．
また，DAGの生成に関するアルゴリズムを Algorithm2に示

す．DQCジョブ到着時に，空の DAGを 1つ生成し，ノード集
合およびエッジ集合を空集合として初期化する．各ゲート操作
について，Algorithm1 で得られた各論理タスク 𝜏𝑘 を DAG の
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ノードとして用いる．新たに生成した論理タスクノードに対し，
同一の量子ビットを使用する直前のタスクが存在する場合，そ
のタスクから現在のタスクへ有向辺を追加する．ただし，分散
CNOT（CatEnt）操作の場合は制御量子ビットおよび標的量子
ビットの両方について依存関係を付与する．これにより，量子
ビットの排他的使用制約が DAG上で明示的に表現される．依
存関係の追加後，タスクノードを DAGに登録する．この処理
をすべてのゲート操作について繰り返すことで，DAG全体が構
築される．

Algorithm 2 DAG Generation from Logical Tasks
Require: Logical task set T = {𝜏1, 𝜏2, . . . , 𝜏𝐾 }
Ensure: DAG 𝐺 = (T , 𝐸 )

1: 𝐸 ← ∅
2: for 𝑖 = 1 to 𝐾 − 1 do
3: for 𝑗 = 𝑖 + 1 to 𝐾 do
4: if Q(𝜏𝑖 ) ∩ Q(𝜏 𝑗 ) ≠ ∅ then
5: 𝐸 ← 𝐸 ∪ { (𝜏𝑖 → 𝜏 𝑗 ) }
6: else if 𝜏𝑖 contains CatEnt and P(𝜏𝑖 ) ∩ P (𝜏 𝑗 ) ≠ ∅ then
7: 𝐸 ← 𝐸 ∪ { (𝜏𝑖 → 𝜏 𝑗 ) }
8: end if
9: end for

10: end for
11: Remove transitive edges from 𝐸

12: return 𝐺 = (T , 𝐸 )

3. 6 強化学習の手法
強化学習の目的は DAG で表現された複数の論理的タスク
を，複数 QPUに対して順序・割当を最適化し全体の処理時間
を最小化することである．本稿では強化学習の手法として PPO
（Proximal plicy Optimization）を使用する [8]．シミュレーショ
ンでは状態・行動が高次元かつ連続的に変化し，DAGという制
約構造を持つ．動的到着ジョブを扱うため，学習の安定性が最
重要である．PPOは方策更新が制限されており学習が安定し，
即時報酬ベース設計と相性が良く，状態・行動の拡張に強いと
いう特徴を持つ．短期的に遅延を増やす行動を低報酬とし，長
期的に DAGのクリティカルパスを短縮する行動を高累積報酬
として学習することで，強化学習は DAGのクリティカルパス
を短縮する方向に自然に誘導される．

3. 6. 1 状 態
時刻 𝑡 のときの状態 𝑠𝑡 は式（5）で定義される．

𝑠𝑡 = (J active
𝑡 ,T ready

𝑡 ,QPU𝑡 ,Ddechoh
𝑡 ) (5)

QPU𝑡 により，各 QPUがいつ使用可能になるかを把握するこ
とで，将来の待ち時間を考慮した割り当て判断が可能となる．
また Ddechoh

𝑡 により，量子状態の劣化が進行している QPU を
回避するなど，忠実度低下を抑制する行動を学習できる．これ
により，𝑠𝑡 によって，強化学習は古いジョブを優先し，ボトル
ネックを回避し，量子状態が壊れにくくする．

3. 6. 2 行 動
行動としては到着している DAGの中から 1つの実行可能ノー
ドを選び，割り当てる QPUを選ぶ．

𝑎𝑡 = (𝜏, 𝑞) (6)

3. 6. 3 エピソード
ポアソン分布に従ってランダムに到着する 200個の DQC要

求を 1エピソードとし，1000エピソード行う．
3. 6. 4 報 酬
本報酬は待ち時間最小化と忠実度維持を通じて，間接的にク

リティカルパス短縮を誘導する．報酬関数は式（7）で表される．

𝑟𝑡 = −𝛼
∑

𝑗∈𝐽active
𝑡

𝑊 𝑗 (𝑡) − 𝛽
∑
𝜏∈𝑇𝑡

Δ𝐹𝜏 − 𝛾
∑
𝜏∈𝑇𝑡

𝐼𝐼 (𝐹𝜏 < 𝐹th) (7)

本稿では，忠実度閾値違反を最優先で回避するため 𝛾 ≫ 𝛼, 𝛽と
設定した．第一の項は，未完了ジョブの待ち時間に比例したペ
ナルティであり，平均処理時間の削減を直接的に目的とする．
DQC環境では複数のジョブが同時に滞留するため処理遅延が
累積しやすく，待ち時間を明示的に抑制することが全体性能の
向上に不可欠である．この項を導入することで，エージェント
はジョブ滞留を避ける行動を学習し，平均完了時間の短縮が促
進される．
第二の項は，タスク実行に伴う忠実度劣化量に応じたペナル

ティである．量子状態の忠実度はタスクの進行に伴って連続的
に低下するため，最終結果のみを評価する報酬設計では劣化の
兆候を十分に捉えることができない．そこで，本稿では微小な
忠実度劣化も逐次的に評価対象とすることでエージェントが将
来的な劣化を予測し，先回りして抑制するような資源割り当て
方策を学習できるように設計した．
第三の項は，忠実度が所定の閾値を下回った場合に与えられ

る大きな負の報酬である．忠実度閾値の違反は，量子状態の崩
壊や計算結果の無効化を意味し，処理時間の短縮と比較しても
許容できない失敗である．そのため，本稿では閾値違反を強く
排除する目的で，この項を導入した．これにより，致命的な忠
実度劣化を伴うスケジューリング方策は学習過程で自然に排除
され，安全性を確保した方策探索が可能となる．
以上の三項は，それぞれ平均処理時間の短縮，忠実度劣化の

抑制，致命的失敗の回避という異なる役割を担っており，DQC
スケジューリングにおける主要な要求を網羅的に反映している．
これらを同一の報酬関数内で評価することで，安全性を維持し
つつ高速なスケジューリングを実現することを目指す．

4. 性能評価方法
4. 1 ネットワーク
本稿では，DQCを想定した量子ネットワーク上において，動

的に到着する複数の DQC ジョブを処理する環境を構築する．
ネットワークは Python の NetworkX ライブラリを用いて生成
し，各ノードを量子プロセッサユニット（QPU），各エッジを量
子通信リンクとしてモデル化する．

QPU数は 30とし，各 QPUが保有する計算可能な量子ビッ
ト数は一様分布に従い 15から 25の範囲でランダムに割り当て
る．ネットワークトポロジは Erdős–Rényi（ER）ランダムグラ
フモデル 𝐺 (𝑁, 𝑝ed) に基づいて生成する [3]．ここで 𝑁 = 30は
ノード数，𝑝ed = 0.6は任意の 2QPU間に量子通信リンクが存在
する確率を表す．
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4. 2 比 較 対 象
本稿では，提案手法の有効性を評価するため，既存手法およ
び異なる強化学習ベースの手法を比較する．比較対象として，
以下の二つの手法を採用した．
MIPSに基づく資源割り当て手法
一つ目の比較対象として，関連研究において提案されている
MIPS（Mixed Integer Programming-based Scheduling）手法を用
いる [3]．この手法では，DQCにおける資源割り当ておよび回
路スケジューリング問題を，混合整数計画問題として定式化し，
最適解を求めることにより資源を割り当てる．MIPS 手法は，
与えられた要求集合に対して理論的に最適な解を導出できる点
に特徴があり，静的または準静的な要求環境において高い性能
を示す．本稿では，このMIPS手法を，各スナップショットで
最適解を求めた準静的手法として用いる．
強化学習による戦略選択手法
二つ目の比較対象として，強化学習を用いて，あらかじめ定義
された複数の資源割り当て戦略の中から最適な戦略を選択する
手法を用いる．この手法では，資源割り当て自体は既存のルー
ルベースまたはヒューリスティックな戦略に基づいて行われ，
強化学習エージェントはネットワーク状態に応じて，どの戦略
を適用するかを選択する役割を担う．これにより，環境の変化
に応じた柔軟な戦略切り替えが可能となる一方で，個々の資源
割り当て行動は事前に設計された戦略に制約される．本稿で
は，この手法を「間接的に資源割り当てを最適化する強化学習
手法」と位置づけ，提案手法との比較を行う．

4. 3 評 価 手 法
本稿では，提案する強化学習による直接資源割り当て手法の
有効性を検証するため，DQC要求の処理性能および計算コス
トの観点から評価を行う．評価指標として，DQC要求の発生
から処理完了までに要する時間の平均値に着目する．DQC要
求が発生してから処理が完了するまでの総処理時間を測定し，
その平均値の変化を評価する．評価は，DQC要求の特性を変
化させた複数の条件下で行う．第一に，1要求当たりに必要な
量子ビット数の平均値を変化させる．第二に，DQC要求の到
着率を変化させる．これにより，負荷の異なる動的環境下にお
いて，要求規模の違いが処理時間に与える影響を比較する．

4. 3. 1 量子ビット数の変化
1要求当たりに必要な量子ビット数の違いが DQC要求の処
理時間および資源割り当て計算時間に与える影響を評価するた
め，要求規模を段階的に変化させた比較実験を行う．要求規模
は各 DQC要求が必要とする論理量子ビット数 |𝑄 | によって定
義する．本稿のネットワークモデルでは，各 QPUが保持する量
子ビット数をその QPU上で同時に使用可能な論理量子ビット
数とみなす．各 QPUの論理量子ビット数は一様分布𝑈 (15, 25)
に従って割り当てられており，平均的には 1QPUあたり約 20
量子ビットを使用可能である．

DQC要求は必ず複数の QPUを用いるものとし，最小構成と
して 2QPU を使用する要求から全体の約 3 分の 1 に相当する
10QPU を使用する大規模要求までを対象とする．この条件に
基づき，必要論理量子ビット数 |𝑄 |と使用 QPU数の関係を対応
付け，段階的な要求規模を設定する．具体的には平均的な QPU

の量子ビット数に基づき，必要論理量子ビット数 |𝑄 | の平均を
40, 60, 80, 100, 120, 150, 180の 7段階に設定する．また，この
時の DQC要求の到着率を 10要求 /𝑠と設定する．
このように要求規模を段階的に増加させることで，小規模要

求では通信や待ち時間の影響が支配的となる一方，大規模要求
では資源競合や割り当て戦略の違いが顕著に現れると考えられ
る．本稿ではこれらの条件下で提案手法と比較手法を適用し，
要求規模の違いが処理時間および計算時間に与える影響を定量
的に評価する．

4. 3. 2 到着率の変化
DQC要求の到着率がシステム性能に与える影響を評価する

ため，到着率を変化させた場合の比較を行う．4.4節の量子ビッ
ト数の変化と同様に，到着率を 7段階に設定し，低負荷状態か
ら高負荷状態までを段階的に変化させる．DQC要求の到着は
ポアソン過程に従うものとし，到着率を 5, 8, 11, 14, 17, 20, 23
要求 /𝑠とする．

10要求 /𝑠 は 4.4 節における評価条件と一致する基準値であ
り，それを中心として到着頻度が低い場合および高い場合の両
方を評価対象とする．このとき，各 DQC要求が必要とする要
求量子ビット数の平均は 100に固定する．これにより，要求規
模の影響を排除し，到着率の変化が資源競合，待ち時間，およ
び実行時間に与える影響を純粋に評価できる．以上の条件のも
と，到着率の増加に伴う平均実行時間の変化を測定し，要求が
集中する高負荷環境においても提案手法が安定して性能を維持
できるかを既存手法との比較により検証する．

5. 数 値 結 果

図 1 平均要求量子ビットの変化に対する平均処理時間の変化

図 2 到着率の変化に対する平均処理時間の変化

量子ビット数を増加させた場合（図 1），すべての手法におい
て平均処理時間は増加する傾向が確認された．量子ビット数の
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増加は，使用する QPU数の増大や非局所ゲート（CatEnt）の増
加を引き起こし，量子通信時間および同期待ち時間を押し上げ
る要因となる．そのため，処理時間が増加すること自体は避け
られない．一方で，量子ビット数の変化に対する処理時間の上
昇は比較的緩やかであり，各ジョブ内部の DAG構造の拡大に
ほぼ比例した増加に留まっている．
これに対して，到着率を増加させた場合には（図 2），量子
ビット数変化の場合と比べて処理時間の上昇率が大きく，特に
高到着率条件では急激な性能劣化が観測された．到着率の上昇
は，同時に存在する未完了ジョブ数の増加を引き起こし，QPU
の待ち行列が形成されやすくなる．その結果，待ち時間が累積
的に増大し，処理時間全体に対して非線形な影響を与える．し
たがって，処理時間に対する影響という観点では，量子ビット
数の増加よりも到着率の増加の方が支配的であるといえる。
このような条件下において，提案手法は他の二手法と比較し
て一貫して短い平均処理時間を達成している．MIPSに基づく
手法では，各スナップショットで最適化問題を解くため高負荷
環境では資源割り当て計算時間そのものが増大し，さらに割り
当て結果が即時的な混雑状況を十分に反映できない場合があ
る．そのため，要求規模増大や高到着率などの条件下では，処
理時間が大幅に悪化する．また，間接 RL（戦略選択型強化学
習）手法は，MIPSと比べて計算時間を抑制できるものの，実
際の資源割り当ては事前に定義された戦略に依存している．そ
のため，DAGの進行状況や QPUの局所的な混雑といった細粒
度な状態変化に十分に追従できず，負荷が高い条件では処理時
間の増加を抑えきれない．
これに対して提案手法は，実行可能な論理タスクと割り当て
先 QPUを強化学習によって逐次決定するため，DAGの進行状
態や QPUの利用状況を直接反映した柔軟な資源割り当てが可
能である．特に到着率が高い状況では，QPU の混雑を回避す
る行動や，クリティカルパス上のタスクを優先する行動が学習
されることで，待ち時間の増加が相対的に抑制されている．結
果，厳しい動的環境においても処理時間の増加を抑制できてお
り，他の二手法と比較して優れたスケーラビリティと安定性を
有しているといえる．

6. ま と め
本稿では，DQCを対象とした資源割り当て問題に着目し，動
的に到着する DQC 要求に対して，DAG の進行状態および各
QPU の利用状況を状態として直接入力し，実行可能タスクと
割り当て先 QPUを逐次決定する強化学習手法を提案した．提
案手法はあらかじめ定義された戦略の選択に依存せず，細粒度
な資源割り当てをオンラインで行える点に特徴がある．シミュ
レーション評価では，量子ビット数および DQC要求の到着率
を変化させた条件下において提案手法をMIPSに基づく資源割
り当て手法および戦略選択型強化学習手法と比較した．その結
果，提案手法は全ての評価条件において平均処理時間を最も短
く抑えることが確認された．特に，大規模 DQC要求や高到着
率条件といった高負荷環境下においても処理時間の増加が比較
的緩やかであり，高い安定性とスケーラビリティを有すること
が示された．処理時間の内訳分析からMIPS手法では資源割り

当て計算時間および待ち時間が性能劣化の主因となる一方，間
接 RL手法では計算時間は抑制されるものの，戦略選択に基づ
く制御の制約により待ち時間の削減に限界があることが明らか
となった．これに対して，提案手法は割り当て計算時間を一定
に保ちながら動的な資源競合を適切に緩和できる点で優れてい
る．以上の結果から，本稿で提案した手法は動的な DQC要求
を扱う将来の量子ネットワーク環境において有効かつ実用的な
アプローチであると結論付けられる．
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