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分散スケッチの重複測定の回避法とスケッチ配置法
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あらまし コンテンツの多様化に伴いネットワークの規模とトラフィックが増大する中，限られたメモリ資源で効率
的かつ高精度なトラフィック測定が求められている．スケッチアルゴリズムは，フロー情報を小規模なデータ構造に
要約し，低コストで近似的な測定を可能とする手法であり，近年注目されている．一方，分散型スケッチでは重複測
定やスケッチノード配置の最適化が課題となる．本稿では，媒介中心性に基づくスケッチノード配置方式と，重複測
定を回避する方式を提案し，計算機シミュレーションにより有効性を評価する．
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Abstract As the development of content continues to expand network scale and traffic volume, there is an increasing de-
mand for efficient and highly accurate traffic measurement under limited memory resources. Sketch algorithms have recently
attracted significant attention as a low-cost approach that summarizes flow information into compact data structures, enabling
approximate traffic measurement. However, in distributed environments, challenges such as redundant measurements and the
optimization of sketch node placement arise. In this paper, we propose a sketch node placement scheme based on betweenness
centrality, along with a method to avoid redundant measurements, and evaluate their effectiveness through simulations.
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1. は じ め に
近年，ネットワークの規模と複雑性の増大に伴い，効率的か
つ正確なトラフィック測定の重要性が高まっている．従来のト
ラフィック観測手法では，測定精度を高めると大規模な計算コ
ストやメモリコストが発生し，一方でサンプリング等によりコ
ストを削減すると測定精度が低下するという課題が存在する．
このような課題を解決する手段として，スケッチアルゴリズム
が注目されている．スケッチは，観測対象のデータをリアルタ
イムで集計しつつ，メモリ使用量を抑え，必要に応じて統計量
を推定することができる．大規模ネットワークにおけるトラ
フィック測定では，スケッチを用いることで効率的かつ正確な
測定が可能となる．
このようなスケッチは，中央集中的にスケッチノードを設置
する方式と，分散型でスケッチノードを配置する方式が存在す
る．中央集中的に設置した場合，実装が簡単で，精度も高くな
るが，全てのフローが限られたノードに集中するため，ノード

の負荷が大きくなる．一方，分散型は負荷の分散が可能である
が，いくつかの課題が存在する．各ノードが中央の制御を受け
ないため，同一フローが複数のスケッチノードで重複して測定
される問題である．重複測定は推定精度の低下につながる．さ
らに，スケッチノードをどの位置に設置するかによって，測定
効率に大きな差が生じる問題も存在する．
これらの課題を解決するために，本稿では，(1)パケットヘッ

ダにフラグを設定することで重複測定を回避する方式と，(2)媒
介中心性に基づく段階的なスケッチ配置方式，の２つの方式を
提案する．本方式により，ネットワーク全体で効率的かつ正確
なトラフィック測定を実現し，完全自律分散による効率的なス
ケッチ測定環境の実現を目指す．また計算機シミュレーション
より，提案方式の有効性を確認する．

2. スケッチアルゴリズム
2. 1 スケッチの概要
スケッチアルゴリズムとは，大規模なデータストリームを対
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象として，すべてのデータを保存することなく，限られたメモ
リ資源の下で統計量を近似的に推定するための確率的データ構
造である．スケッチでは，観測対象となる各データを逐次的に
処理し，ハッシュ関数などを用いて内部の要約情報を更新する
ことで，データの到着順序や総数に依存せずに処理を行うこと
ができる．
スケッチアルゴリズムには，頻度推定，ヘビーヒッタ検出，
分位点推定など，目的に応じてさまざまな手法が提案されてお
り，求める統計量に応じて適切なアルゴリズムを選択する必要
がある．

2. 2 Count-Min Sketch
Count-Min Sketch（CMS）は，データストリーム中に出現す
る要素の頻度を，限られたメモリ資源のもとで近似的に推定す
るための代表的なスケッチアルゴリズムである．CMSでは，各
要素 𝑥 の実際の出現頻度を 𝑓 (𝑥)，推定された頻度を 𝑓 (𝑥)，ス
トリーム全体に含まれる要素数の総和を 𝑁 とすると，式 (1)で
誤差保証が理論的に与えられる．

𝑓 (𝑥) ≤ 𝑓 (𝑥) ≤ 𝑓 (𝑥) + 𝜀𝑁 , 1 − 𝛿の確率で保証される (1)

ここで 𝜀 は許容誤差率，𝛿 は失敗確率を表す．式 (1)が示すよ
うに，CMSによる推定値は常に実際の頻度以上となり，確率
1 − 𝛿で最大誤差が 𝜀𝑁 に抑えられることが保証される．

CMSでは，あらかじめ許容誤差率 𝜀 と失敗確率 𝛿 を設定す
ることで，必要なメモリサイズが理論式に基づいて決定される．
すなわち幅 𝑤，深さ 𝑑 を持つ二次元配列によって構成され，そ
れぞれ式 (2)と式 (3)で与えられる．

𝑤 =
⌈ 𝑒
𝜀

⌉
(2)

𝑑 =

⌈
log

1
𝛿

⌉
(3)

ここで，𝑤は各行に配置されるカウンタ数（頻度を記録する配
列要素），𝑑 は使用する独立なハッシュ関数の個数に対応する．
誤差率 𝜀を小さく設定するほど幅 𝑤が増大し，失敗確率 𝛿を小
さく設定するほど深さ dが増大するため，推定精度とメモリ使
用量との間にはトレードオフの関係が存在する．

CMSでは，𝑑 個の独立なハッシュ関数 ℎ1，ℎ2，. . .，ℎ𝑑 を用
いてデータを処理する．データストリーム中で要素 𝑥 が観測さ
れた場合，各ハッシュ関数に対応するカウンタを式 (4)のよう
に更新する．

∀𝑖 ∈ {1, . . . , 𝑑}, 𝐶 [𝑖] [ℎ𝑖 (𝑥)] ← 𝐶 [𝑖] [ℎ𝑖 (𝑥)] + 1 (4)

この処理により，CMSはデータを保存することなく，到着した
要素を逐次的にカウントすることが可能となる [1]．

3. 関 連 研 究
3. 1 スケッチの配置問題
ネットワーク測定において，スケッチをどのノードに配置

するかは測定精度や効率に大きく影響する重要な課題である．
Chenらは，スケッチ配置問題に対して主に 2種類のアプローチ
が存在することを示している [3]．一つはMILP（mixed-integer
linear programming）による完全最適化，もう一つはヒューリス
ティックによる近似最適化である．

MILPを用いる手法では，全てのフロー状況やネットワーク
トポロジの組み合わせを計算することで理論上は最適配置を得
ることができる．しかし，実際のネットワークではフローや負
荷が動的に変化するため，計算コストが非常に高く，トポロジ
の変化による拡張が困難である．一方，ヒューリスティック手

法は計算コストを抑えはでき，拡張も簡単であるが，最適な配
置ではない．[3]では，計算コストと負荷分散の両方を考慮した
最適に近い配置手法を提案しているが，MILPほどの最適化は
行えず，ヒューリスティックよりは最適な配置の探索に時間が
かかるという特徴を持つ．

3. 2 重複測定問題
分散型ネットワークにおいて，複数のノードが同一フロー

を測定することによる重複測定も重要な課題である．Liらは，
中央集中的なスケッチ配置ではリソース使用量は少ないもの
の，特定ノードに負荷が集中する問題があることを指摘してい
る [2]．これに対し，協力型分散スケッチ配置を提案しており，
負荷分散と共に重複測定を削減している．しかし，この手法は
フロー傾向を事前に解析し，セグメント単位でスケッチを配置
する設計であるため，リアルタイムで変化するネットワーク環
境での適用は難しい．

3. 3 既存研究の限界
既存研究から，以下の課題が明らかである．
（ 1） スケッチ配置の最適化と計算コストのトレードオフ：

MILP は理論上の最適化度が高いが計算コストが極めて高く，
拡張するには困難である.一方，ヒューリスティックは計算コ
ストは低く拡張にも容易であるが，最適度はMILPに劣る.
（ 2） 分散型における重複測定：事前にフローを解釈するこ
とで重複測定の削減はできたものの，リアルタイム変動に弱く，
重複測定を完全に除去できたわけではない.
これらの課題を解決するため，本稿では新たな配置方法とし

て媒介中心性に基づくスケッチノード配置方式と，フラグを用
いた重複測定の完全排除方式の 2つの方式を提案し，分散環境
でも高精度かつ効率的な測定を目指す．

4. 提 案 方 式
4. 1 重複測定の回避（フラグ設定）
分散型スケッチ配置環境では，同一フローが複数のスケッチ

ノードを通過する可能性があり，重複測定が発生する恐れがあ
る．重複測定を回避するために，パケットのヘッダに 1ビット
のフラグを付加することで，重複測定を回避する方式を提案す
る．このフラグは，当該パケットが既にスケッチによって測定
されたか否かを示すものである．初期状態では，全てのパケッ
トのフラグ値は 0に設定されている．フラグ値が 0のパケット
がスケッチノードを通過した場合，当該パケットは測定対象と
なり，スケッチ処理が行われると同時に，フラグ値は 1に更新
される．一方，フラグ値が 1のパケットが他のスケッチノード
を通過した場合，当該パケットは既に測定済みであると判断さ
れ，スケッチ処理は行われず，そのまま転送される．
この方式により，同一フローに属するパケットが複数のス

ケッチノードで重複して測定されることを防ぐことができる．
具体的には，提案方式におけるフラグ情報を IPv4 ヘッダの
Optionsフィールドに格納する．IPv4の Optionsフィールドは
Type–Length–Value（TLV）形式で構成されており，Option Type，
Lengthフィールドは 1バイト，Valueは 2バイトである．Length
フィールドを 4と設定することで，Option全体の長さを 4バイ
トとし，IPv4ヘッダの 32ビット境界に整合させている．Value
部は 2 バイトで構成され，先頭バイトの 1 ビットを「当該パ
ケットが既に測定済みであること」を示すフラグとして利用す
る．残りのビットおよび後続の 1バイトはパディングとして 0
に設定する．フラグ情報を格納した IPv4 ヘッダの形式を図 1
に示す．
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図 1: 提案方式におけるフラグ情報を含む IPv4ヘッダ形式

また，IPv6 においても同様にフラグ情報をヘッダ内に格納
することが可能である．IPv6では IPv4の Optionsフィールド
に相当する機構として，Extension Header が定義されており，
本稿では Hop-by-Hop Options Headerを利用する．Hop-by-Hop
Options Headerも TLV形式で構成されており，Option Type，Opt
Data Lenおよび Option Dataからなる．Option Data部の 1ビッ
トをフラグとして利用し，残りのビットはパディングとして 0
で埋める．フラグ情報を格納した IPv6ヘッダの形式を図 2に
示す．

図 2: 提案方式におけるフラグ情報を含む IPv6ヘッダ形式

4. 2 効率的な配置（媒介中心性を用いた段階的配置方式）
スケッチノードの配置は測定性能に大きな影響を与える．本
稿では，実用的な計算時間で配置順序を決定するため，ヒュー
リスティックな配置方式を用いる．媒介中心性（betweenness
centrality）は，ネットワーク内のノードが他のノード間の最短
経路上にどの程度位置しているかを表す指標であり，式 (5)で
定義される．

𝐵𝐶 (𝑣) =
∑
𝑠≠𝑣≠𝑡

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

(5)

ここで，𝜎𝑠𝑡 はノード 𝑠 からノード 𝑡 への最短経路の総数を表
し，𝜎𝑠𝑡 (𝑣) はそれらのうちノード 𝑣を通過する最短経路の数を
表す．
単純に媒介中心性の高い順にスケッチノードを配置する方
法では，既に測定可能なフローが集中する可能性があり，カバ
レッジの観点で非効率となる場合がある．そこで本稿では，以
下の手順により媒介中心性を段階的に更新する反復的な配置方
式を提案する．
（ 1） 全フローを対象として媒介中心性を計算
（ 2） 最も媒介中心性の高いノードを選択し，最初のスケッ
チ配置ノードに決定
（ 3） 選択されたノードを通過するフローを測定済みとみな
し，フロー集合から除外
（ 4） 残存するフローのみを対象として，再度媒介中心性を

計算
（ 5） 上記の手順を繰り返し，スケッチノードの配置順序を
決定

5. 性 能 評 価
5. 1 評 価 条 件
本稿では，ネットワークのノード，リンク，人口などの情

報として，米国の商用 ISP のバックボーンネットワークであ
る，”allegiance telecom”，”at home network”，”att”，”cais inter-
net”，”verio”の 5種類のトポロジを使用する．ノード間の距離
は，トポロジに含まれる各ノードの経度および緯度情報を用い
て計算し，距離に基づいてダイクストラ法を適用することで最
短経路を求める．ノード間距離の計算式は式 6の通りである．

𝑑 (x1，x2) =
√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (6)

シミュレーションにおけるトラフィックの発生は，各トポロジ
に付与された人口データを用い，重力モデルに基づいて各フ
ロー毎に 10万回行った．本稿ではスケッチを用いたネットワー
ク測定を対象としているため，使用するスケッチアルゴリズム
として代表的なアルゴリズムである Count-Min Sketchを採用し
た．CMSの誤差率を 0.001（0.1%），失敗確率を 0.01（1%）に
設定し，一つのスケッチノードに必要なメモリ容量は，理論式
に基づく計算の結果，約 53KBである．
効率性の評価では，スケッチノード数を一つずつ増加させる

ことでスケッチの比率を段階的に変化させ，ネットワーク全体
で発生するフローのうち，どの程度をスケッチによって測定で
きるかを評価するため，式 (7)で定義されるカバレッジを指標
として用いる．ここで 𝐶 はカバレッジ，𝑃sketch は測定済みのパ
ケットの数，𝑃total はネットワークで発生したパケットの数を意
味する．

𝐶 =
𝑃sketch
𝑃total

(7)

スケッチの比率は，全ノード数に対するスケッチ設置ノード
数の割合として定義し，式 (8)で表される．ここで，𝑅はスケッ
チの比率，𝑁sketch はスケッチ処理ノードの数，𝑁node はネット
ワーク全体でのノードの数を意味する．

𝑅 =
𝑁sketch
𝑁node

(8)

効率性の比較対象として，(1)スケッチをランダムに配置した
場合 (スケッチノードをランダムに配置し，10回シミュレーショ
ンして，平均を求める)，(2)媒介中心性（betweenness centrality，
bc）の高い順に配置した場合，(3) 本稿で提案する方式に基づ
いて配置した場合の 3通りの配置方式を用いる．精度の評価に
は，既存研究 [4]で用いられている評価指標である式 (9)に基づ
いて算出する．

1
𝑁

𝑁∑
𝑖=1

�� 𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖)
�� (9)

ここで，𝑁 は評価対象となるフローの総数を表し， 𝑓 (𝑥𝑖) は実
際のフロー量， 𝑓 (𝑥𝑖) は CMSによる推定値である．精度評価に
おいても，スケッチノード数を 1つずつ増加させた場合の変化
を観察し，ランダム配置，BC順配置，提案方式の 3通りにつ
いて比較を行う．

5. 2 効率性の評価
本節では，5種類の実ネットワークトポロジ（allegiance tele-

com，at home network，att，cais internet，verio）を用いて，提
案手法の測定性能を評価する．評価指標として，スケッチノー
ドの比率 (横軸)に対するフローカバレッジ (縦軸)を用い，提案
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手法，媒介中心性に基づく配置方式，およびランダム配置方式
を比較する．図 3～7に，5つの各トポロジにおける各方式のカ
バレッジを，スケッチ比率に対して各々示す．
図 3に示す verioのトポロジの結果では，提案手法はスケッ
チ比率 0.3付近においてカバレッジ 1を達成しており，他の手
法を上回る性能を示している．ただし，スケッチの比率 0.2ま
での範囲では，媒介中心性に基づく配置方式が提案手法と同等
のカバレッジを示している．図 4に示す allegiance Telecomの
トポロジの結果では，提案手法はスケッチ比率 0.2付近におい
てカバレッジ 1を達成しており，他の手法と比較して高い測定
性能を示している．一方で，スケッチの比率 0.1までの初期段
階では，媒介中心性に基づく配置方式が提案手法とほぼ同等の
カバレッジを示している．
図 5に示す attのトポロジの結果では，提案手法はスケッチ

比率 0.3付近においてカバレッジ 1を達成しており，ランダム
配置方式を大きく上回る結果を示している．ただし，媒介中心
性に基づく配置方式が提案手法とほぼ同じカバレッジを表して
いる．図 6に示す at home networkのトポロジの結果では，提
案手法はスケッチ比率 0.3付近においてカバレッジ 1を達成し
ており，他の手法と比較して高い測定性能を示している．注目
すべき点として，図 3～図 5の結果とは異なり，媒介中心性に
基づく配置方式がランダム配置方式よりも低い性能を示して
いる．図 7に示す cais internetのトポロジの結果では，提案手
法はスケッチ比率 0.5付近においてカバレッジ 1を達成してお
り，他の配置方式を上回る結果を示している．注目すべき点と
して，図 6と同様に媒介中心性に基づく配置方式がランダム配
置方式よりも低い性能を示している．
以上の結果を総合すると，提案手法はいずれのトポロジにお

いても，他の手法と比較して最も早い段階で 100%のカバレッ
ジへ収束しており，特定のネットワーク構造に依存しない安定
した性能を有することが確認された．一方，媒介中心性に基づ
く配置方式は，スケッチ比率の増加に伴い，初期段階における
カバレッジの立ち上がりは提案手法と同じく急激に増加するも
のの，一定の数値に達した後からはカバレッジの増加率が低く
なる傾向がみられる．これは，媒介中心性がネットワーク構造
上の重要性を反映する指標である一方で，フローの通過関係や
重複測定の影響を直接考慮していないためであると考えられる．

図 3: Verioのカバレッジ

図 4: Allegiance Telecomのカバレッジ

図 5: ATTのカバレッジ

図 6: At Home Networkのカバレッジ

図 7: CAIS Internetのカバレッジ

5. 3 精度の評価
本節では，5種類の実ネットワークトポロジを用いて，提案

手法の測定精度を評価する．評価指標として，スケッチノード
数を 1からトポロジ内の全ノード数まで段階的に増加させた際
の，実際のフローの頻度と CMSによる推定値との差の平均（平
均誤差）を用いた．図 8～12に，5つの各トポロジにおける各
方式の平均誤差を，スケッチノード数に対して各々示す．
図 8に示す verioトポロジの結果において，提案手法は少数

のスケッチノード数の段階から平均誤差がほかの手法と比較し
て同等または小さく，高い推定精度を達成している．特に，ラ
ンダム配置方式と比較して初期段階における誤差の差は最大
280に達しており，媒介中心性に基づく配置方式よりも少ない
スケッチノード数で誤差がほぼ 0に収束していることが確認で
きる．図 9 に示す allegiance telecom トポロジの結果において
も，提案手法はスケッチノード数が少ない場合でも他の方式と
比較して平均誤差を抑えている．また，媒介中心性に基づく配
置方式と比較すると，初期段階において提案手法の方が誤差の
収束が早い傾向が見られる．
図 10に示す attトポロジの結果では，提案手法と媒介中心性

に基づく配置方式がほぼ同程度の平均誤差を示している．しか
しながら，提案手法はランダム配置方式と比較して初期段階か
ら誤差が小さく，少数のスケッチノードにおける推定精度の優
位性が確認できる．図 11に示す at home networkトポロジの結
果では，提案手法は他の方式と比較して，スケッチノード数の
増加に伴う平均誤差の減少が最も早いことが示されている．注
目すべき点として，媒介中心性に基づく配置方式がランダム配

— 4 —



置方式より平均誤差が高いことが挙げられる．図 12に示す cais
internetトポロジの結果においても，提案手法は他の方式と比
較して，スケッチノード数の増加に伴う平均誤差の減少が最も
早いことが示されている．他方式と比較して，媒介中心性に基
づく配置方式がランダム配置方式より平均誤差が高いことが特
徴的である．
図 8から図 12に示す各トポロジにおける結果を見ると，提
案手法はトポロジに寄らず，少数のスケッチノードであっても
平均誤差が非常に小さく，正確な推定推定が可能であることが
確認できる．また，提案手法は att以外のトポロジでスケッチ
ノード数が増加するにつれて提案手法の平均誤差はほぼ 0に収
束し，全てのトポロジにおいて他方式よりも，ネットワーク全
体のフローをより少ないスケッチノードで高い精度を保証し，
把握できることが確認された．以上の結果から，提案手法は分
散型環境においても CMSによるフロー測定の精度を高く維持
できることが確認できる．

図 8: Verioの平均誤差

図 9: Allegiance Telecomの平均誤差

図 10: ATTの平均誤差

図 11: At Home Networkの平均誤差

図 12: CAIS Internetの平均誤差

6. ま と め
本稿では，分散型ネットワーク環境における CMSによるフ

ロー測定の効率と精度の向上を目的として，媒介中心性に基づ
くスケッチノード配置方式とフラグ設定による重複測定の回避
の 2種類を提案した．5種類の実ネットワークトポロジに対す
る評価では，提案手法はトポロジに関係なく，少数のスケッチ
ノードでも多くのフローをカバーでき，平均誤差が非常に小さ
く，高精度な推定が可能であることを確認した．特に，提案方
式は少数のスケッチを用いた場合でも高いカバレッジを維持
し，他の配置方式よりも少数のスケッチノードで効率的にネッ
トワーク全体のフローを把握できることが確認された．
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