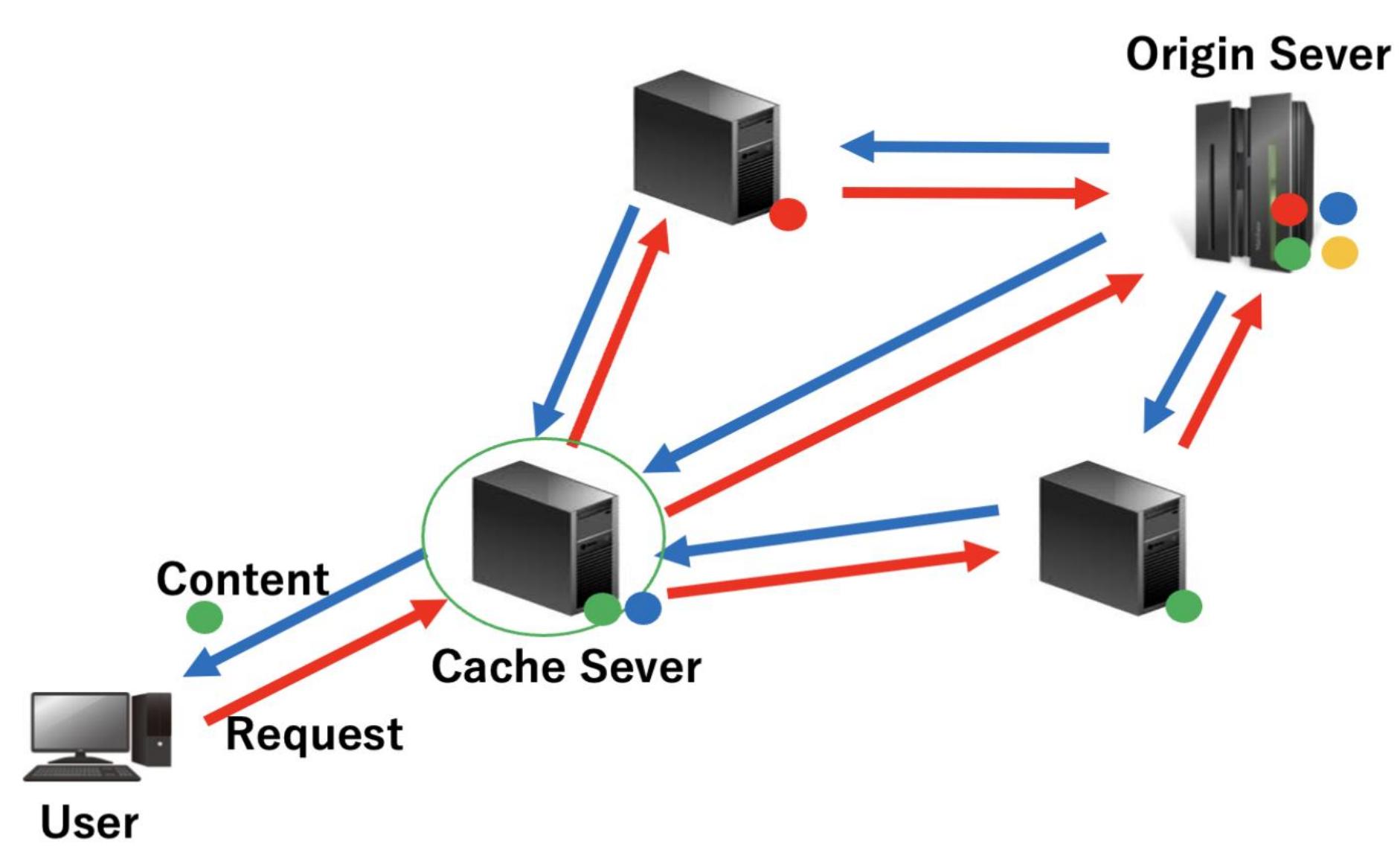


Dynamic Content Recommendation Considering Cache State and Preference Using Reinforcement Learning

Shota Ochiai, Noriaki Kamiyama (Ritsumeikan Univ., Japan)

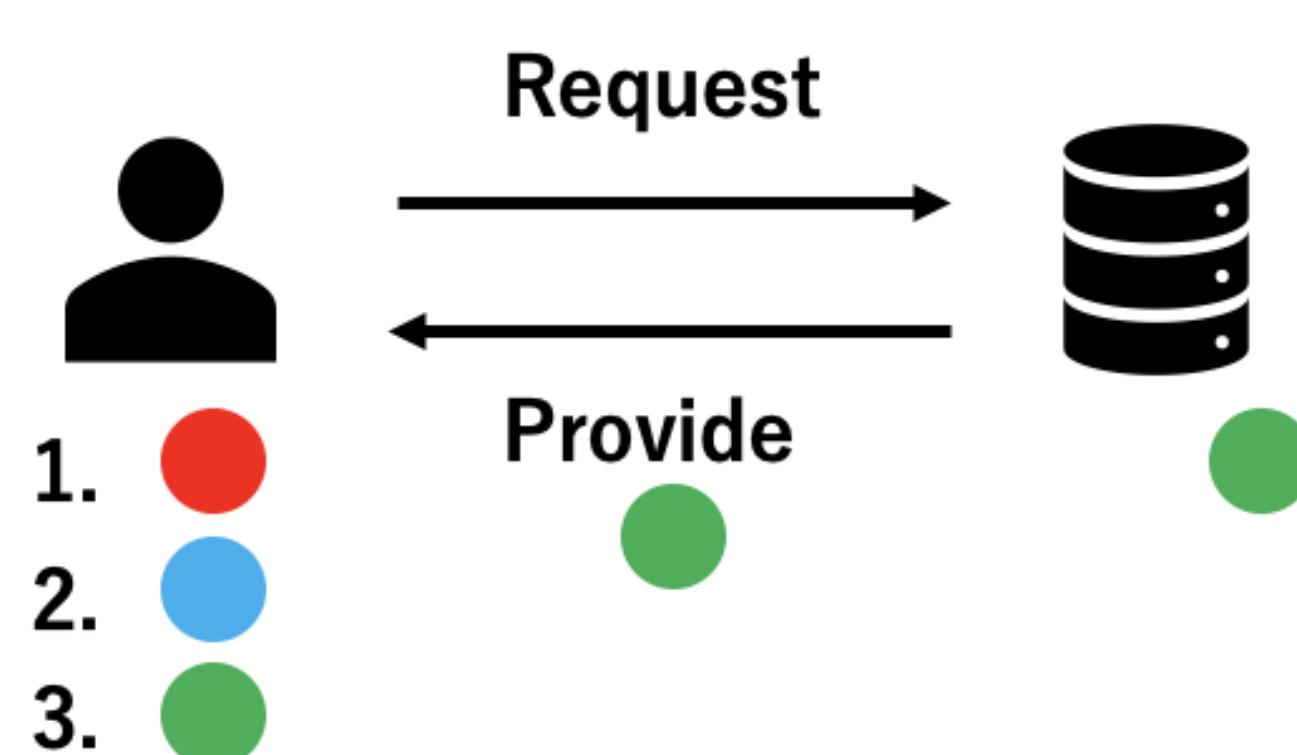
1. Introduction

- The Need for Recommendation System (RS)
 - Widespread use of services with massive content
 - Difficulty for users to find content matching their preferences
- Mitigating Latency
 - Delivery latency caused by recommendation increases user churn
 - **CDN** is generally used to mitigate this latency

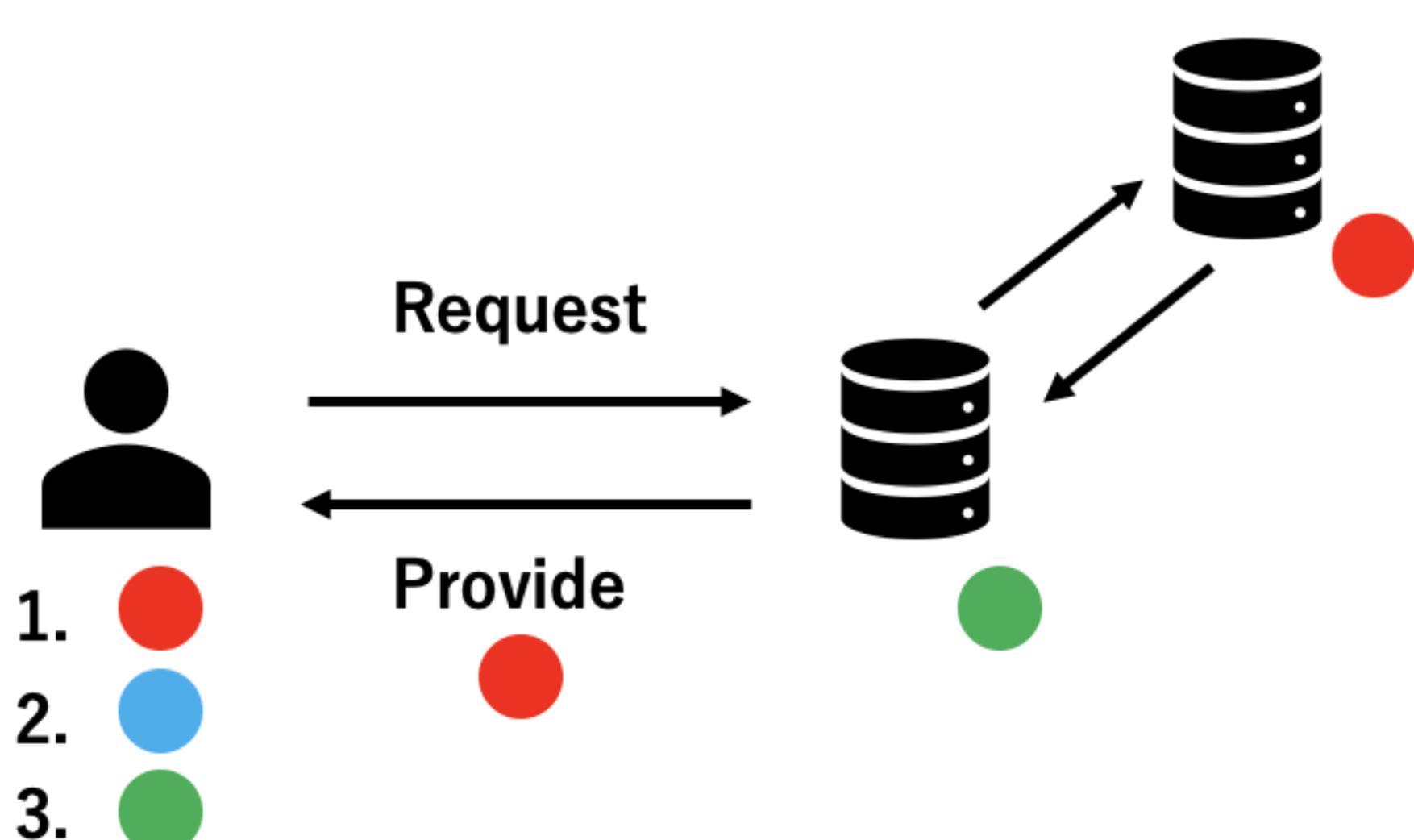


2. Challenges in Recommendation System Using Cache

- The **Trade-off**
 - Inherent trade-off between improving cache hit rate and recommendation accuracy
 - Prioritizing cache state



- Prioritizing preferences



- Environmental Limitation

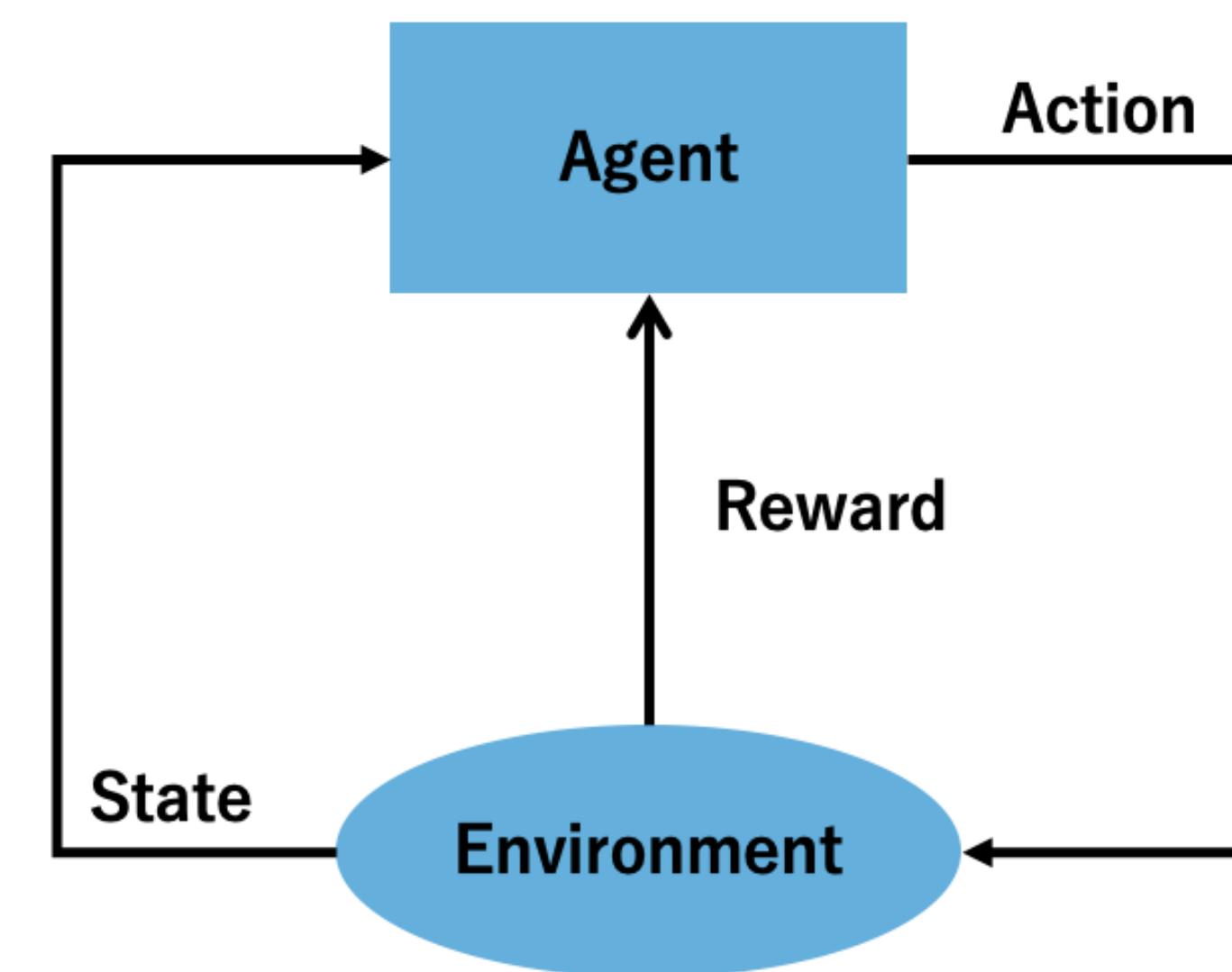
- Most existing studies addressing both metrics assume a static environment

3. Purpose of This Work

- Dual Goal in **Dynamic Settings**
 - Target a **dynamic environment** where user count and content popularity fluctuate
 - Aim to simultaneously achieve a **high cache hit rate and accurate preference-matching recommendation** using Reinforcement Learning

3. Proposed Method

- Applying **Reinforcement Learning (RL)**
 - Formulation of the recommendation and caching problem for RL



- Optimization via Reward Function
 - Use a reward function designed to improve both cache hit rate and preference-matching performance
- Flexible Prioritization
 - Adjustable weight in the reward function allow flexible tuning of priorities based on specific environmental requirements

4. Evaluation

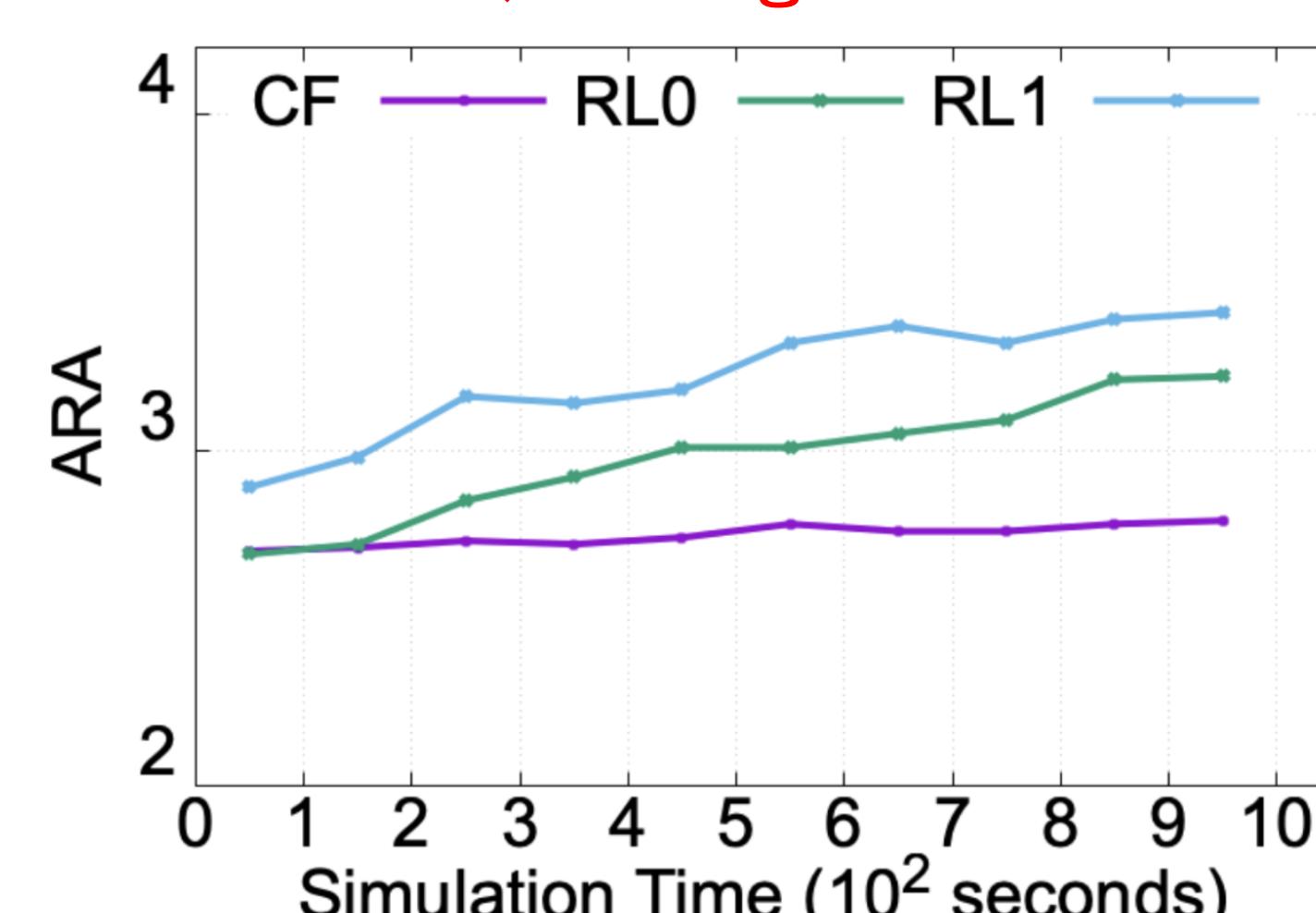
■ Performance Results

- Achieved superior performance in **both cache hit rate and recommendation accuracy** compared to conventional Collaborative Filtering (CF)

■ CF

Target user	content										Correlation coefficient
	1	2	3	4	5	6	7	8	9	10	
X	—	4	2	—	—	—	—	1	1	5	1.000
A	5	3	4	—	—	—	—	1	2	1	0.063
B	—	—	—	1	1	2	4	5	4	0	-0.982
C	2	3	2	1	—	4	3	2	1	4	0.941
D	2	—	—	2	4	5	1	2	5	5	0.500
E	—	5	0	—	5	1	—	1	1	2	0.615
Degree of recommend	2.00	4.00	1.00	1.50	4.50	3.33	2.00	1.66	2.33	3.66	

■ ARA (Average Recommendation Accuracy)



RL0: No Pre-training
RL1: Pre-trained

CF	RL0	RL1
0.0325	0.1153	0.1545

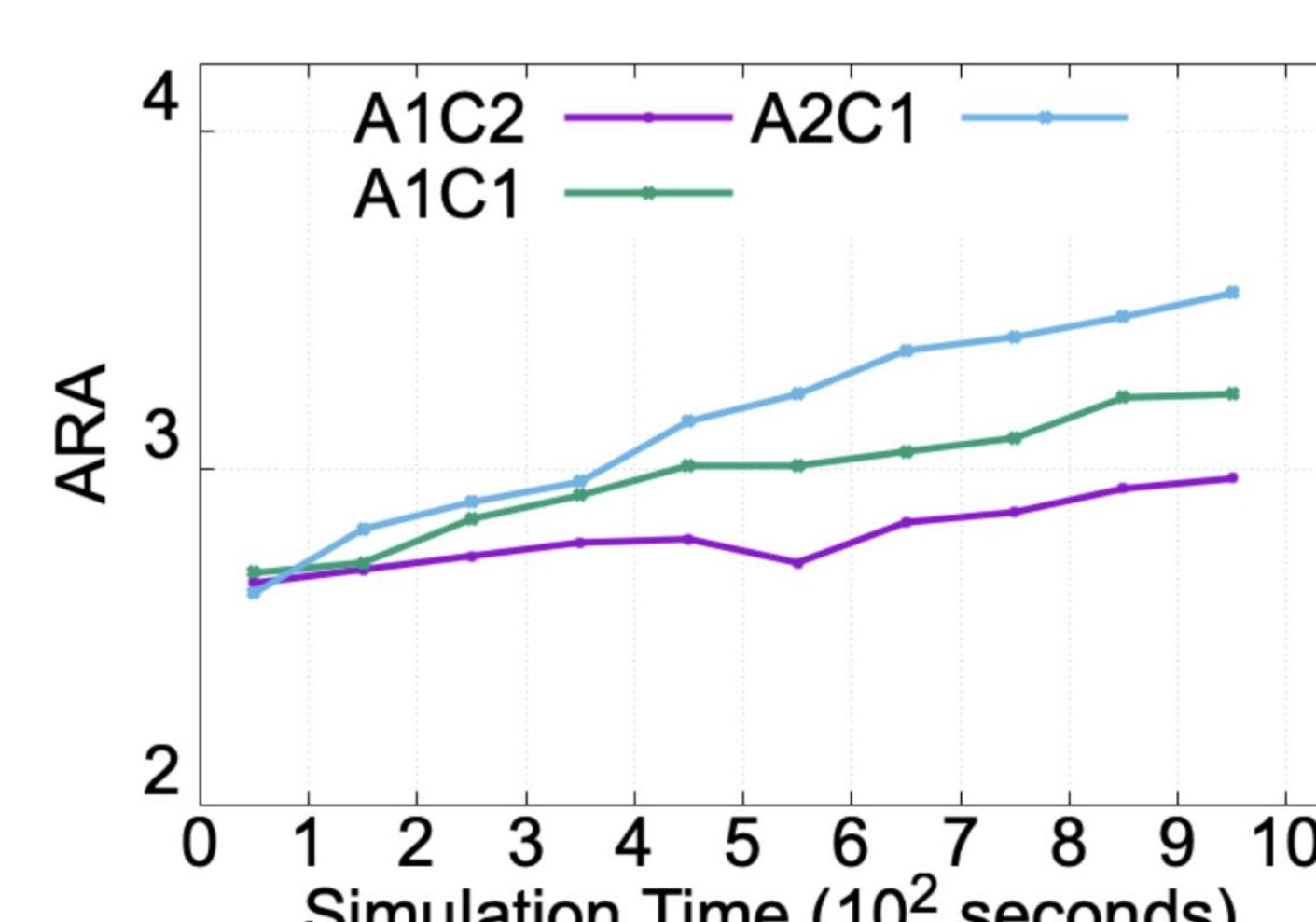
■ Adaptability Check

- Verified that adjusting reward weights enables the system to adapt its focus to environmental needs

A1C2: Cache Priority (Accuracy : Cache = 1 : 2)

A1C1: Balanced (Accuracy : Cache = 1 : 1)

A2C1: Accuracy Priority (Accuracy : Cache = 2 : 1)



A1C2	A1C1	A2C1
0.1723	0.1153	0.0576