LEO衛星ネットワークの 事業者間提携の収益分配

立命館大学大学院情報理工学研究科 近藤海斗 立命館大学情報理工学部 上山憲昭 東京科学大学工学院 宮田純子

背景

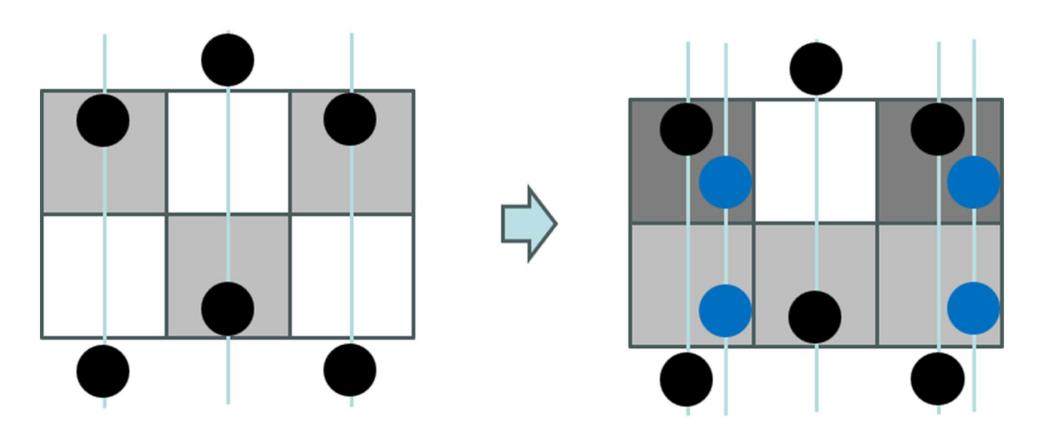
- LEO(Low Earth Orbit)衛星
 - 高度2,000kmまでの低軌道で、約90~120分で地球を一周
 - 通信が可能な地表面は狭いが、低遅延での通信が可能
- LEO衛星通信ネットワーク
 - 多数のLEO衛星を使った衛星コンステレーション(群)を構築し、 地球全体をカバー

概要

■ 課題

- LEO衛星コンステレーションは事業の初期段階(数10基から数 100基程度)において性能を非発揮
- 衛星が常に動くため、衛星数が少ないと、地球を十分にカバー 不可

■ 目的


- LEO衛星事業者の協力サービスモデルを提案
- 参加事業者の適切な分配額を導出

■ アプローチ

- LEO衛星事業者間で衛星を共有し、1つの衛星コンステレーションを構成することを提案
- 協力ゲーム理論を用いた収益配分法を提案し、シミュレーションを通じて有効性を提示

想定条件

- 契約形態:月額制(事業者によらず一定額)
- 数值評価:収益額
- 衛星の通信範囲:グリッドセルに分割
- LEO衛星同士の通信は、どの事業者間でも可能

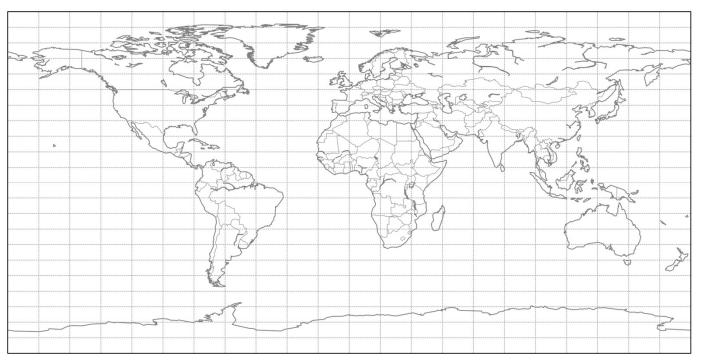
事業者間協力

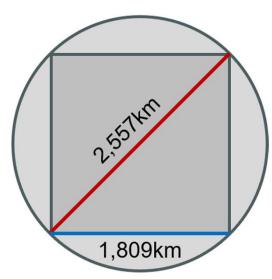
- 1. LEO衛星コンステレーションの構成の初期段階である事業者が他の事業者と協力
- 2. 衛星通信のカバー範囲の拡大、カバレッジ多重度が上昇
 - カバレッジ多重度:グリットセル内の衛星数
- 3. 契約者の満足度が上昇
 - カバー範囲の拡大→サービスを利用可能な範囲の拡大
 - カバレッジ多重度の上昇→ユーザの通信速度が上昇
- 4. 契約率が上昇
- 5. 収益が上昇
- 6. 事業者間で収益を分配
 - 提携ゲーム

提携ゲーム

- 協力ゲーム理論の基本モデル
 - 複数の自律的なプレイヤがいる場合にどのような提携を形成し、各プレイヤに利益をどう分配するかを議論する理論
- シャープレイ値
 - 各プレイヤの「限界貢献度」(提携に参加することで追加される 価値の期待値)を計算し、分配
- 特性関数v
 - 提携が達成できる最大の価値(収益)を割り当てる関数
- 特性関数vを用いてシャープレイ値 φ を計算

モデル化


R_s:衛星の通信範囲


$$R_s = R_e \cos^{-1} \left(\frac{R_e}{R_e + H} \right)$$

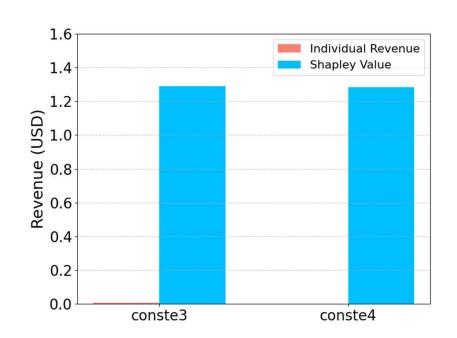
- 衛星から地平線までの視野角により通信可能範囲が決定
- R_e:地球の半径
- H:衛星の高度
- グリッドセルごとに、収益を計算
 - 契約者×月額料金
 - 衛星の容量を閾値に
 - カバレッジ多重度(衛星数)の平均を用いる
 - 衛星の動きをシミュレーション

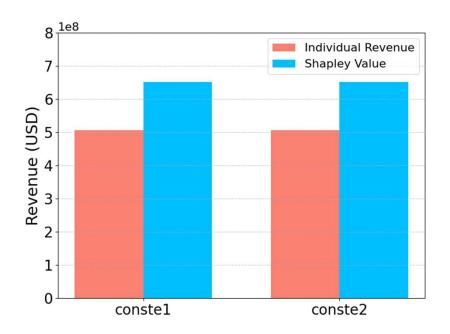
評価条件(1/2)

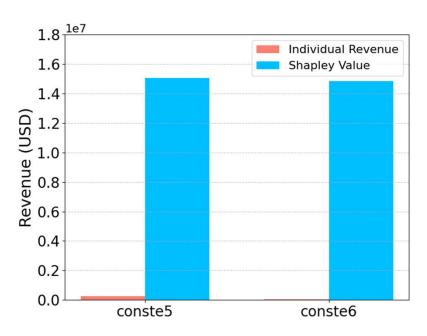
- R_S(通信範囲)は約2,557km
 - R_e (地球の半径)は約6,371km, H(衛星の高度)を550kmとする
- 世界地図を22*22のグリッドセルに分割
 - 直径R_sの円に内接する正方形の一辺は約1,809kmで, 地球の 円周を39,798kmと近似

評価条件(2/2)

衛星コンステレーションの構成

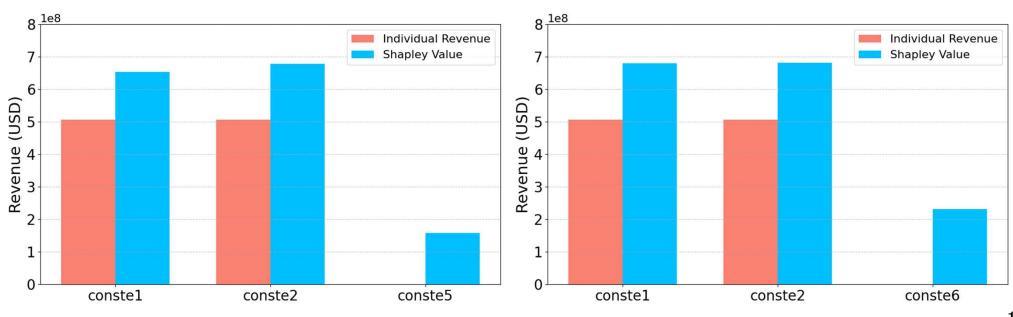

名前	軌道	衛星数
conste1	極軌道	648
conste2	極軌道	648
conste3	極軌道	36
conste4	傾斜軌道	30
conste5	極軌道	216
conste6	傾斜軌道	216

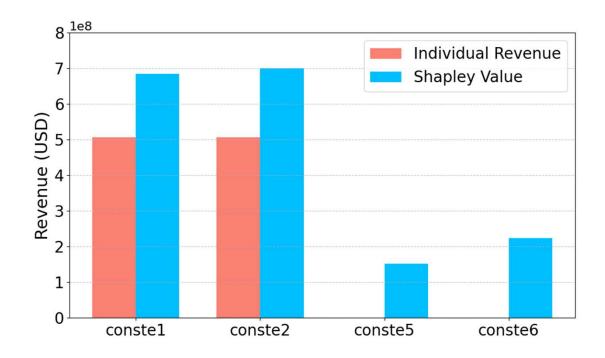

収益を求めるために必要なパラメータ


記号	値	
β	100(\$)	
U	0.5(Mbps)	
γ	$20000(\mathrm{Mbps})$	
δ	5(Mbps)	
C_{US_min}	0	
C_{US_max}	0.01	
ρ	0.8	

収益評価(2者間協力)

- conste1+2→先行研究
- conste3+4
 - カバー率が0.1程度だが、 収益が上昇しすぎてる
 - モデルに不適合
- coste5+6
 - カバー率0.6で, 不適合




収益評価(3者間協力)

- 2者での協力と比較して、収益上昇
 - カバー率(conste1,2,5): 0.95
 - カバー率(conste1,2,6): 0.97
- 小規模事業者にとっては、大規模事業者との協力が有効
- conste6の収益 > conste5の収益
 - cosnste6は傾斜軌道, conste5は極軌道
 - 傾斜軌道は高需要地域を重点的にカバー

収益評価(4者間協力)

- 3者間協力との収益比較
 - conste1, conste2→わずかに上昇
 - conste5, conste6→わずかに減少
- 3者の協力の時点で、需要が満たされているため、追加的な協力の利得が限定的

まとめ

- LEO衛星ネットワークにおける複数事業者間の協力による通信サービスの収益分配モデルの提案・評価
- 多くの組み合わせで協力によって収益が飛躍的に増加
- 大規模事業者と小規模事業者の協力は、小規模事業者の 収益を著しく向上
- 今後
 - 協力が有効となる条件や閾値の体系化,サービス可能性を制 約とした現実的なモデル構築
 - 時間軸やコスト構造を導入した動的モデルへの拡張