Latency Evaluation of Anycast CDN with Limited Cache Sets

Futo Masai Noriaki Kamiyama

Ritsumeikan University

Background

- CDN (Content Delivery Network)
 - Using geographically distributing cache servers (CSs)
 - Reducing latency and distributing load
- Anycast CDN
 - Assign the same IP address to multiple CSs
 - Route user requests via BGP to the closest CS
 - Enables simple operation
- Microsoft Anycast CDN
 - Maintains multiple CS sets called ring, each of which is assigned a unique IP address
 - Always choose the ring with the most CS

Problems of Anycast CDN

- 1. Suboptimal CS Selection
 - 10 ~ 15% of users route to distant CSs *1
 - Deploy hundreds of CSs and decrease the impact of suboptimal selection
- 2. Increasing the Probability of Suboptimal Selections
 - Deploying more distribution sites decreased the probability of routing to optimal CS
- 3. Ignore Regional Bias in Content Popularity

- Previous Study *2
 - Propose a method to create multiple rings composed of a small number of CSs, which considers regional content popularity by using a Genetic Algorithm (GA)

^{*1} Matt Calder, et al., Analyzing the Performance of an Anycast CDN, ACM IMC 2015

^{*2} Chihiro Kato, at el., Designing Server Sets for Anycast CDN Using Genetic Algorithm, IEEE ICC 2024

Overview

- Limitations of Previous Work
 - Actual latency reduction effect was not evaluated.
- Purpose of this Study
 - Evaluates the latency reduction of multi-ring anycast CDNs using measured Round Trip Times (RTTs)
- Approach
 - Measure RTTs for optimal and suboptimal CS selections
 - Calculate delivery latency per content and average latency
 - Compare this method with a conventional single-ring anycast
 CDN

Cache Sets (ring) Configuration Method

- Creating multiple rings with a small number of CSs, considering regional content popularity using a GA
- Ring Construction Method Using GA
 - Gene: The collection of rings composed of multiple AS
 - Fitness: The average coverage rate by the AS placement of genes among the top 5 demanding countries for each content
 - Using tournament selection to choose genes
- Key parameters of GA
 - Initial gene: 300
 - Mutation rate: 0.1
 - Generation: 100,000

RTT Measurement and Latency Calculation

- RTT Measurement Method
 - Using the RIPE Atlas internet measurement platform
 - Measure RTT from Probes in content demand countries to the ASes
- lacksquare Calculation of Content Latency L_m

$$L_{m} = \frac{\sum_{i=1}^{5} \left((1-p)O_{m,i} + pS_{m,i} \right) T_{m,r_{m,i}}}{\sum_{j=1}^{5} T_{m,r_{m,j}}}$$

Variables

$r_{m,i}$	The i -th country with the highest demand for content m	$T_{m,r_{m,j}}$	Demand ratio of country $r_{m,i}$ for content m
$O_{m,i}$	RTT from $r_{m,i}$. to the optimal AS	p	Probability of a suboptimal AS being
$S_{m,i}$	RTT from $r_{m,i}$. to the suboptimal AS		selected

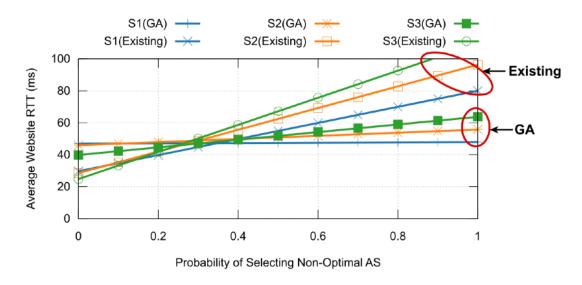
Determination of Delivery AS

- 1. Check if an AS exists within the country of content demand
- 2. If an AS is present:
 - Measure the RTT to each AS within that country
 - Set the AS with the best RTT as the optimal AS
 - Set the AS with the worst RTT as the suboptimal AS
- 3. If no AS is present:
 - Set the geographically closest AS as both the optimal and suboptimal AS

Evaluation Conditions

GA Method

- Multiple rings constructed from a small number of CSs
- The number of rings is 20
- The number of ASes constituting the ring is 5, 10, or 15


Existing Method

- Single ring composed of numerous CSs
- Integrate Anycast CDN configured with GA into one ring

	<i>s</i> 1		<i>s</i> 2		<i>s</i> 3	
	N	k	N	k	N	k
GA Method	20	5	20	10	20	15
Existing Method	1	84	1	154	1	198

Performance Evaluation

- The average RTT against the probability p of suboptimal AS selection
- The method using GA is stable
- lacksquare The existing method increases RTT with increasing p
- Lines cross at
 - p = 0.35
 - p = 0.31
 - p = 0.25

- 55% of users are routed to optimal CSs *
 - Using GA method is effective

Conclusion

- Evaluated the latency reduction effect of anycast CDNs that have multiple rings consisting of a small number of CSs using measured RTTs
- Compared with existing methods that have a single ring composed of multiple CSs
- When the probability p of suboptimal selection exceeds 0.25–0.35, the method using GA is effective.

Acknowledgment

This work was supported by a grant from the Takahashi Industrial and Economic Research Foundation.

This presentation is supported by the "Society for the Advancement of Science and Technology at Ritsumeikan"