
1. Introduction

3. Purpose of This Work

5. Proposed Method

Task Scheduling with Duplication Avoidance for
ICN-based Autonomous In-Network Computing

Yuki Niibe, Noriaki Kamiyama (Ritsumeikan Univ., Japan)

2. Challenges in ICN-based Autonomous INC

◼ The rise of IoT and the arrival of new applications
⚫ The emergence of data-intensive applications utilizing data

obtained from IoT devices, IoT Big Data (IoTBD)
⚫ An environment capable for such requests is necessary

◼ Processing a wide variety of requests for IoTBD
◼ Common Method
◼ Processing data on a remote cloud
◼ Network edge <-> Network core
◼ Inefficiency in data transfer distance

◼ In-network computing
◼ Processing data while transferring from the edge to the

core network

◼ Key technology in In-network computing
◼ Service Function Chaining (SFC)
◼ Method for linking deplyed functions
◼ Used to link virtualized network functions (VNF).
◼ Adaptable to various tasks other than network functions

◼ Centralized management v.s. Autonomous management
◼ Traditionally, a central server manages the execution and

linking of each task.
◼ Considering the future increase in IoT devices, it will

become necessary to handle devices that are more
widely distributed throughout society
◼ Limits to centralized management

◼ Autonomous In-network computing
◼ Information-centric networking + Service Function Chaining

◼ Duplicate task execution

⚫ Each node determines the destination for sending Interest

to preceding tasks from its own routing table (FIB)

⚫ Even for the same task, Interest may be sent to different

locations Duplicate allocation / Duplicate execution

➢ Waste of computing resources

◼ Autonomous ICN-based In-network computing(ICN + SFC)

➢ Avoiding duplicate task execution

✓ Algorithm for avoiding duplicate task execution

✓ Without destroying dependencies necessary for task

execution

◼ Determining the assignment order to avoid duplication

⚫ Creating a Topological Order

⚫ Parallel task assignments will result in duplicate

⚫ Assignment operations should be performed in a

one-stroke order, not parallel

⚫ Serialize the DAG Topological Order

⚫ Creating a Topological Order using ReadyList

◼ ReadyList : A set of tasks for which all successor

tasks are allocated

⚫ When sending interest to predecessor task, select from

ReadyList.

◼ Tasks can be assigned one by one while creating

a topological order

◼ Deciding where to assing tasks

◼ Automatically determine assignment destinations by

calculating blevel

◼ Each time an Interest arrives at a node, calculate the
blevel for assigning tasks to that node and its neighbor
nodes
◼ blevel : Estimated longest remaining time of task

⚫ Select the node with the smaller blevel from among

the node and its neighbor nodes

◼ Duplicate assignments could be prevented

◼ Previous method : long task assignment phase

◼ Causes queuing delays because it performs a large

number of assignments

◼ Proposed method : fast assignment phase

◼ the execution phase is slow

◼ By assigning tasks in a one-stroke, the distance

between each task increases

◼ More optimal allocation is needed while avoiding

duplication

This presentation is supported by ASTER

6. Evaluation

	スライド 1

