2024

MASTER’S THESIS

Improving Byzantine Fault Tolerance in
Blockchain Networks with Dynamic
Clustering

acAapeMIC sUPERVISOR: KAMIYAMA Noriaki

Graduate School of Information Science and Engineering
Ritsumeikan University

MASTER’S PROGRAM
MAJOR in Advanced Information Science and Engineering

stupentiD: 6611230015-6
NAME: OKADA Teppei

Abstract

In recent years, blockchain technology, which enables transactions to be distributed across mul-
tiple computers and managed in an immutable and secure manner, has garnered significant attention.
Within blockchain networks, consensus mechanisms ensure the consistent sharing of ledger infor-
mation when new blocks are added. In consortium blockchains, typically employed by a limited
number of organizations, the Practical Byzantine Fault Tolerance (PBFT) protocol is widely used.
PBFT is designed to tolerate Byzantine nodes—nodes that may be compromised or malfunctioning
—by achieving consensus as long as fewer than one-third of the total nodes are Byzantine. However,
PBFT relies on the assumption that at least two-thirds of the nodes behave correctly, making consen-
sus challenging when the number of malicious nodes exceeds this threshold. Previous research has
explored the use of clustering to enhance throughput, but these methods are static and unsuited to
dynamic environments. Moreover, clustering techniques aimed at bolstering Byzantine resistance re-
main underexplored. This paper presents a novel method for constructing clusters within a blockchain
network to resist Byzantine nodes. By employing clustering, we estimate the locations of potential
attackers, thereby enhancing the system’s resilience to Byzantine faults.

Contents

Abstract
1 Introduction
2 Rerated Work

3 Proposed Method

3.1 Overview
3.1.1 Proposed Method I
3.1.2 Proposed MethodII.
3.1.3 Liveness and Security
3.2 Performance Limit
3.2.1 Probability of Consensus Formation
3.2.2 Amount of Communication Traffic.

4 Performance Evaluation

4.1 Evaluation Conditions
4.2 Consensus Probability
42.1 Proposed MethodI
422 Proposed MethodIT.
43 Amountof Traffic
4.3.1 Proposed MethodI
4.3.2 Proposed MethodIT.

4.3.3 Traffic Volume against the Number of Clusters
5 Conclusion

Acknowledgement

12
12
14
15
16

18
18
18
18
20
20
20
20
24

26

27

Chapter 1

Introduction

Blockchain is a technology that allows for the secure, tamper-resistant sharing and management
of transactions across multiple computers using a distributed ledger. There are three primary types
of blockchain: permissioned, permissionless, and hybrid. Permissioned blockchains offer high trans-
parency without a central administrator, but their main drawback is that transaction processing and
approval times can increase significantly as the number of participants and transaction volume grows.
In contrast, permissionless blockchains restrict participation to a single administrator, allowing for
faster approval times and limited data disclosure. However, this comes at the expense of decentraliza-
tion, as authority is concentrated in the hands of the administrator.

The hybrid type falls between the permissioned and permissionless blockchains, with multi-
ple administrators sharing control. While processing times are slower compared to permissionless
blockchains, the decentralized distribution of authority makes hybrid blockchains more resistant to
data tampering.

Additionally, blockchains use consensus mechanisms where new blocks or transactions are ver-
ified by all participants upon creation, allowing for the detection and elimination of potentially fal-
sifiable transactions. Furthermore, Byzantine fault-tolerant (BFT) consensus mechanisms are also
adopted in blockchains like Burrow, Quorum, and Red Belly Blockchain, enhancing their security and
performance [1]. In addition to its common use in hybrid blockchains, the Practical Byzantine Fault
Tolerance (PBFT) mechanism [2] is also employed in permissioned blockchains in combination with
Proof of Stake. Examples of this include Tendermint [3], used in Cosmos [4], and Tenderbake [5],
used in Tezos [6], which have been proposed to implement this mechanism in such contexts.

In PBFT, consensus can be correctly achieved as long as the number of Byzantine nodes is less
than one-third of the total number of nodes. Conversely, PBFT requires that more than two-thirds
of the nodes are functioning correctly, which complicates the agreement process if the number of
attackers exceeds a certain threshold, as illustrated in Figure 1.1.

Thus, consensus in PBFT is influenced by the presence of Byzantine nodes. This paper proposes a
method to enhance resilience against Byzantine attacks by partitioning the topology through cluster-
ing, estimating the locations of attackers, and concentrating them within specific clusters [7]. While
the proposed method aims to achieve correct consensus, there is a concern that this may lead to in-
creased communication traffic. Therefore, we compare the probability of consensus formation with
the amount of communication traffic generated when employing the proposed method.

O ®
o dh

Normal Node

O
)

@® Byzantine Node
dh

& O
dh)

O
o

Figure 1.1: PBFT

The main contributions of this study are as follows:

o In PBFT, which requires more than two-thirds of participants to be normal nodes for consensus
to be achieved, the proposed method enables correct consensus even when fewer than two-thirds
of the nodes are functioning normally.

e We conduct a theoretical analysis of the upper limit of consensus probability, demonstrating
that the simulation results align with the theoretical values.

e We also analyze the upper limit of communication traffic volume theoretically, deriving analyt-

ical results that elucidate the relationship between the number of clusters and traffic volume.

In Section 2, we discuss related works, while the proposed method is outlined in Section 3. Section
4 presents the performance evaluation, and we conclude with a summary in Section 5.

Chapter 2
Rerated Work

PBFT [2] consists of a client, replica nodes, and a primary node. Clients generate transactions and
send them to the network, while replica nodes represent the nodes within that network. The primary
node, designated from among the replica nodes, receives transactions from clients and forwards them
to the other replica nodes. To achieve precise agreement, consensus is reached through three phases—
pre-prepare, prepare, and commit—following the client’s submission of the transaction to the primary
node, as illustrated in Figure 2.1.

e pre-prepare phase:
The primary node forwards the transaction to the other replica nodes. Each receiving node
verifies the validity of the transaction and subsequently broadcasts the verification results to the
other nodes.

e prepare phase:
The replica nodes confirm that the verification results match those provided by the primary node
and then broadcast their results to the other nodes.

e commit phase:

If a node agrees with the message received during the prepare phase, it sends a commit message
to the other nodes.

Finally, when a commit message is received from more than two-thirds of the nodes, a reply
message 1s sent to the client to indicate that consensus has been successfully achieved.

If the primary node fails or behaves maliciously, PBFT initiates a ”View Change” process to elect
a new primary node. This process involves the following steps:

e Each replica node sends a view-change message to all other nodes, indicating that the current
primary is no longer trusted.

e Nodes agree on a new primary node based on predefined criteria.

o After agreement, the new primary takes over the responsibilities and resumes the consensus
process.

The View Change ensures that the network can recover from primary node failures without compro-
mising safety or liveness.

In PBFT, forks do not occur because it is designed to reach consensus on any given data; however,
there are cases where consensus may fail to be achieved.

request :pre—prepare: prepare ! commit reply

client :
primary—.\-H| 3
| \\ 5
replical : \vll‘ %\vtvl’
replica2 : \ A’(M&’é //
, Z/ vVI NS
replica3 : ‘\\ //‘\\ /

Figure 2.1: Consensus in PBFT

In [8], the authors present a theoretical analysis of temporal variations in block communication
among validator nodes in Ethereum 2. The study models the process of broadcasting a block from
the node that generates it to the other nodes, characterizing this process as a Markov process where
the probability of each node receiving the block is considered. For a total of N nodes, the resulting
communication delay was confirmed to follow O(N log N).

In [9], the authors propose RC-PBFT (Random Cluster PBFT) and demonstrate its effectiveness,
addressing the significant communication overhead inherent in PBFT due to the extensive interactions
between nodes. Their approach involves creating clusters through clustering, performing PBFT within
randomly selected clusters, and broadcasting the results to other clusters. This method reduces the
time required for consensus and enhances throughput compared to conventional PBFT. However, this
paper identifies the insufficient optimization of cluster selection as a key issue, and highlights the lack
of resilience to Byzantine nodes due to the use of random clustering.

In [10], the authors address the issue of slow transaction verification in Proof-of-Work (PoW) and
propose a method to reduce the verification time by utilizing parallel mining both within and between
clusters.

As shown in Figure 2.2, the network comprises mining nodes that perform mining and full nodes
that distribute blocks to other clusters. Mining begins simultaneously across all clusters, and the
mining node that discovers a block sends it to the full node, which then forwards it to the mining
nodes within its own cluster as well as to other full nodes. All full nodes that receive the block

Full node

O‘\

) Mining

O node

Parallel Mining

Figure 2.2:

broadcast it to their respective mining nodes for verification. The experimental results indicate that
this approach reduces consensus time and enhances the scalability of the network. However, this paper
does not present specific evaluations or simulation results regarding how clustering-based topology
improvements contribute to network security. In particular, it appears to lack a detailed analysis of
resilience against varying numbers of adversaries.

In [11], the authors express concern that while a distributed network structure is anticipated to
enhance scalability and eliminate single points of failure in networks comprising multiple robots,
PBFT requires extensive communication to achieve consensus. To address this, they propose a method
that groups robot nodes into clusters using the k-means algorithm, aiming to reduce consensus delays
and energy consumption between groups. Additionally, the behavior of nodes in each cluster during
the consensus process is monitored and scored, with the node having the highest score randomly
selected as the primary node to enhance the reliability of the primary node.

In [12], a novel consensus algorithm (NBFT) is proposed to achieve high fault tolerance and de-
centralization, while improving communication complexity and scalability. This study reduces com-
munication complexity through a hash algorithm and ensures the safety of consensus within groups
by introducing a threshold voting model. However, the focus is primarily on reducing traffic, with
limited consideration given to the potential impacts of attackers.

In [13], the authors provide a systematic and comprehensive review of blockchain sharding tech-
niques, identifying the key elements and challenges associated with sharding. Sharding is a technique
that divides nodes into multiple groups (shards) to enhance the scalability of a blockchain network,
enabling each shard to process transactions independently and thereby increasing the overall process-
ing capacity. This study analyzes in detail the essential components of sharding implementation and
the challenges that may arise.However, this paper highlights that in the presence of an unexpectedly
large number of Byzantine nodes, there is a potential risk of data block tampering. Although the
proposed scheme shows promise in enhancing data integrity, it does not offer a complete resolution
to the issue.

In [14], the study employs network coding, a technique for efficient data transmission, in PBFT.
The proposed method aims to enhance scalability by reducing the maximum bandwidth requirement,
demonstrating improved communication efficiency and scalability compared to conventional meth-
ods.

In [15], a solution is presented for enhancing the scalability of blockchains through a three-layer
architecture. This approach aims to increase overall efficiency by utilizing sharding and distributing
processing tasks across different layers. Meanwhile, [16] categorizes existing sharding schemes based
on blockchain type and sharding technology, analyzing their respective advantages and disadvantages.
The study also establishes criteria for the applicability of various sharding techniques.

Chapter 3

Proposed Method

3.1

Overview

In this paper, we propose two methods, referred to as Proposed Method I and Proposed Method 11,
respectively. Proposed Method 1II is designed to reduce the traffic volume associated with Proposed
Method 1.

3.1.1 Proposed Method I

Following is the flow of the Proposed Method I, as illustrated in Figure 3.1.

1.

6.

Conduct PBFT across the entire network.

2. If consensus cannot be reached, apply the k-means method to partition the network.
3. Conduct PBFT within each cluster.

4.
5

Perform PBFT between clusters based on the results obtained within each cluster.

. If consensus is not achieved, it is determined that there are many attackers in the cluster that

sent the minority opinion, leading to the merging of the minority clusters. After merging, return
to step 3.

If consensus is successfully formed, the process is terminated.

After executing the k-means method, PBFT is performed within clusters and between clusters, as
indicated in steps 3 and 4. This process includes the pre-prepare phase, prepare phase, and commit
phase, which is why Figure 3.1 states ’run each of these three times.” Furthermore, as indicated in
step 5, if consensus cannot be reached even after clustering, clusters are merged each time, which is
noted as “run every merge.”

Thus, the Proposed Method I can estimate clusters with a high concentration of attackers through
clustering and merge them to reduce the overall proportion of attacker clusters. Consequently, the per-
centage of consensus reached also increases. Additionally, the clustering using the k-means method

9

I intra- and inter— ! merge result
= | i
k-means | cluster consensus (within a cluster)
1

]
. . 1
intra— and inter— I
cluster consensus |

=7

NN S e

X
c0 \“‘" ! \/
cl
c2

Frun each of these run every merge Jrun each of these
three times three times

Figure 3.1: Proposed Method 1

and the merging process must be executed autonomously by the nodes, with results shared among
them. Therefore, there is a phase dedicated to broadcasting geographical and other relevant informa-
tion.

The specific flow is illustrated in Figure 3.2. The circles represent the nodes in the blockchain
network. In this figure, 7 out of 20 nodes are Byzantine nodes. Since Byzantine nodes comprise
more than one-third of the total, it is impossible to achieve consensus even if PBFT is executed
in this scenario. Consequently, clustering is performed, resulting in one cluster containing more
than one-third of Byzantine nodes, as indicated by the red dotted line. In this case, when PBFT
is conducted within each cluster and between clusters, consensus is reached in four out of the five
clusters, indicating that consensus can be correctly formed.

On the other hand, as shown in the left part of Figure 3.3, even when clustering is performed,
consensus may not be achievable if two clusters contain the majority of Byzantine nodes, resulting
in a situation where more than one-third cannot reach agreement. However, by merging the minority
clusters (indicated by the red dotted line), three normal clusters can be formed out of the four clusters,
allowing for successful consensus formation.

In the proposed method, during the merging process, clusters with a smaller average number
of nodes are combined until the minimum required number of clusters for PBFT, which is four, is
achieved. Table 3.1 illustrates an example of how the number of nodes within clusters changes, with
the average number of nodes per cluster denoted as n and the initial number of clusters represented
by m.

10

O Normal Node @ Byzantine Node
Figure 3.2: Clustering

O Normal Node @ Byzantine Node
Figure 3.3: Merging Clusters

11

No. of Merges | No. of Nodes in Each Cluster | No. of Clusters

0 nn,...,nn m
1 2n,...,n,n m-—1
2 2n,...,2n m-—2

Table 3.1: Number of Nodes within Clusters

3.1.2 Proposed Method II

Following is the flow of the Proposed Method II, as illustrated in Figure 3.4.

1. Apply the k-means method to partition the network.
Conduct PBFT within each cluster.

Perform PBFT between clusters based on the results obtained within each cluster.

S

If consensus is not achieved, it is determined that there are many attackers in the cluster that
sent the minority opinion, leading to all minority clusters being merged at once.

5. If consensus is successfully formed, the process is terminated.
Proposed Method II mainly differs from Proposed Method I in the following aspects.

e The overall PBFT is not executed initially.

¢ Instead of merging minority clusters after each inter-cluster PBFT, multiple minority clusters
are merged simultaneously (Therefore, unlike Figure 3.1, Figure 3.4 does not include the note
“run every merge” during the merge execution phase).

Since the overall PBFT is not executed initially, there is a concern that correct consensus may not
be reached even if the number of attackers is low, or that unnecessary clustering may occur. On the
other hand, by not performing the initial PBFT and merging multiple minority clusters at once, as
shown in Figure 3.5, a reduction in communication traffic is expected.

3.1.3 Liveness and Security

PBFT ensures both liveness and safety even when up to [(n — 1)/3] replicas out of a total of n
replicas are simultaneously faulty. Liveness guarantees that the system can make progress despite
leader failures or the presence of malicious nodes, while safety ensures that the system does not
produce incorrect or inconsistent results. Similarly, in the proposed method, liveness is maintained by
enabling a view change when the leader node becomes a Byzantine faulty node. Furthermore, when

12

c0

cl

c2

| » J la |

: I intra— and inter— : merge result : intra— and inter— :

¥ : k-means : cluster consensus | (within a cluster) | cluster consensus I

o1 AN o NS !
0 Y 2l :

‘\

v
‘,;t
A

F’é
A
:

Mo ot

RIAF -

o, Ko
| X5 N i
%‘.‘.'\} \ ! AR |
7 N N\ '
N A AL RSP
2 @:@ < ; A\ \ | JHHEEX :
PN 58K | 552 '
R 2 R "‘\\"-_ --r:‘- d
by I : |
e v I I I
run each of these %run each of these
three times three times

Figure 3.4: Proposed Method II

O Normal Node @ Byzantine Node ™

Figure 3.5: Merging Clusters in Proposed Method 11

multiple clusters perform a view change simultaneously, it may be necessary for clusters to verify that
the view change has been completed across all clusters. Without such verification, there is a risk that
some clusters might attempt to reach consensus before the view change process has been finalized in
others, leading to potential inconsistencies. Therefore, it would be beneficial to include a mechanism
to check and confirm that all clusters have completed the view change and returned to a stable state,
ensuring that consensus formation between clusters can proceed only after the view change has been
securely completed. Additionally, as demonstrated in Section 4.2, safety is preserved by reducing the
influence of Byzantine nodes compared to the existing PBFT, even when the proportion of Byzantine
nodes exceeds one-third.

3.2 Performance Limit

In this section, we present a theoretical analysis of the probability of consensus formation and the
upper bounds on communication traffic when the proposed method is applied.

variable name meaning
N Total number of nodes
Number of clusters
Number of nodes in cluster
Number of Byzantine nodes

Table 3.2: Variable

3|3

14

3.2.1 Probability of Consensus Formation

We analyze the performance limits of the probability of consensus formation. Assuming equal
divisions, we use the variables defined in Table 3.2 to represent the total number of nodes as follows:

N =mn 3.1

The upper bound on the number of Byzantine nodes in a normal PBFT is given by:
N=mn=3f+1 (3.2)
Therefore,

_mn—l

f‘3

(3.3)

Also, the upper bound on the number of Byzantine nodes f™ in an m-equally divided two-stage
PBFT is as follows:

1. From m = 3f’ + 1, all nodes can be Byzantine nodes in f” clusters. Hence,

fr=— (3.4)

2. For the remaining (2f” + 1) clusters, fromn =3f” + 1,

n—1
"= 35
f== 3.5)
nodes can be Byzantine nodes.
Therefore, from equations (3.4) and (3.5), we have:
"=+ QD f
-1 2
_ ’”"3 +g(m=Dn—1)
2
=f+ §(m - D(n-1). (3.6)

15

2
This means that the proposed method increases the upper limit of Byzantine nodes by §(m— 1)(n—

1) compared to the conventional method.
Given that it increases by m = n,
e = 3.7

As N — oo,

5
=3 (3.8)

5
Consequently, from equation (3.8), if the number of Byzantine nodes is less than 5 of the total

number of nodes, the proposed method may be used to reach a consensus.

3.2.2 Amount of Communication Traffic

We also calculate the communication complexity based on [17] for communication traffic. Using
the variables in Table 3.2, the amount of traffic associated with location information sharing using the
k-means method and consensus building using PBFT is as follows:

NlogN + 3(mlogm + nlogn) (3.9

When the merge is performed once, the number of clusters is m — 1, with the number of nodes in
one cluster being 2n and n for the remaining m — 2 clusters. In this case, the traffic generated will be:

3{(2n)log (2n) + (m — 1) log (m — 1)} (3.10)

When the number of merges is — times, the number of clusters is 7 and the number of nodes in

each cluster is all 2n. Therefore, the amount of communication at this time is:

3 {(2n) log (2) + %log %} G.11)

Therefore, from equations (3.9), (3.10) and (3.11),

NlogN + 3(mlogm +nlogn) + 3 - %-2nlog2n+ZTZ ilogi

1
m
2

m—1
= nmlognm + 3nlogn + 3nmlog2n+ » " ilogi 3.12)
=7

16

Here, in (3.12),

Zj’: ilogi =~

2

xlog xdx

= O(m*log m) (3.13)

Therefore, from (3.13), as m increases, the upper limit of the communication volume increases by
2
m*log m.

17

Chapter 4

Performance Evaluation

In this section, we evaluate the effectiveness of the proposed method through computer simula-
tions. Based on the following evaluation conditions, we compare the proportion of consensus achieved
and the amount of communication traffic generated. For the probability of consensus, we count the
number of times consensus is reached out of 100 executions.

4.1 Evaluation Conditions

Under the conditions outlined in Table 4.1, we compare the proposed method (Proposed Method
k = 7,10, 15) with conventional PBFT (Existing PBFT) and PBFT with the k-means method applied
only once (Existing Method k = 7, 10, 15).

4.2 Consensus Probability

4.2.1 Proposed Method I

Figure 4.1 illustrates the probability of reaching consensus in Proposed Method I for the BA, ER,
and WS models as the number of attackers varies from O to 90. In all models, the proposed method
successfully achieved consensus even when the number of attackers exceeded one-third of the total
number of nodes. It is evident that the consensus probability was higher in the proposed method com-
pared to the conventional method. This improvement can be attributed to the aggregation of clusters
with a high number of attackers, which increased the proportion of clusters that produced correct re-
sults. Furthermore, correct consensus was still attainable even with up to approximately 50 attackers,
representing more than 5/9 of the total participants. This outcome aligns with the performance limits
derived from the theoretical analysis, confirming that the theoretical values are consistent with the
simulation results. However, it is noteworthy that when the number of clusters is small (i.e., k = 7),
the performance limit is exceeded. This discrepancy arises because the theoretical values derived
in Section 3.2.1 are based on a single instance of clustering, while the simulations involve multiple
rounds of clustering and merging, leading to surpassing the expected performance limits.

18

—k
—
1

S 0.8 Bos “H
S 8 y |1\
a8 L 0.6 TR
w W | {i Y
7 0.4 A0 1 \'I 'u\
E S R
S0.2 902 \
] @] |
o A Y o Wi b\
0040 20 30 40 50 60 70 80 90 00—10 20 30 40 50 60 70 80 90
Number of Attackers Number of Attackers
(a) BA (b) ER
1 —T
£ \\x Proposed Method (k=7) ——
go* TN Proposed Method (k=10) ——
S 06 W Proposed Method (k=15) ——
@ \| Existing PBFT ——
2na AR Existing Method (k=7)
202 B Existing Method (k=10)
S \ AL Existing Method (k=15)
0010 20 30 40 50 60 70 80 90
Number of Attackers
(c) WS

Figure 4.1: Consensus Probability in Proposed Method 1

19

Item Condition
Number of nodes 90
Number of Byzantine nodes 0790

Clustering method k-means

Number of clusters 7,10, 15
Barabasi-Albert (BA)

Network topology Erdos-Renyi (ER)
Watts-Strogatz (WS)

Table 4.1: Simulation Conditions

4.2.2 Proposed Method II

Figure 4.2 illustrates the probability of reaching consensus in Proposed Method II for the BA, ER,
and WS models as the number of attackers varies from 0 to 90. As with Proposed Method 1, it is
possible to achieve correct consensus even when attackers comprise up to 5/9 of the total participants.
However, there are instances where consensus is not reached when the number of attackers is between
25 and 30 (i.e., less than one-third of the total). This is due to the initial clustering results, where
clusters with a majority of attackers can represent more than half of the overall clusters. Nonetheless,
the likelihood of such a scenario occurring is low, so it is not expected to impact performance.

4.3 Amount of Traffic

4.3.1 Proposed Method I

Figure 4.3 presents the amount of communication traffic in Proposed Method I. In the proposed
method, the traffic volume increased compared to the conventional method due to the additional traffic
generated by PBFT after clustering and the necessity to broadcast data among nodes for executing the
k-means method. Moreover, when the number of attackers exceeded one-third of the total nodes,
the traffic volume surged significantly because of clustering, merging, and PBFT traffic within and
between clusters. Furthermore, as the number of clusters increased, the frequency of merging also
increased if consensus was not reached, leading to a further rise in traffic volume as the number of
attackers escalated.

4.3.2 Proposed Method II

Figure 4.4 presents the amount of communication traffic in Proposed Method II. Compared to
Figure 4.3, traffic volume is reduced when the number of attackers exceeds 30. This is because the
frequency of merging and PBFT executions has decreased compared to Proposed Method I. However,
the traffic volume remains higher than that of conventional PBFT due to factors like the sharing
of initial clustering results. Therefore, there is a trade-off relationship between the probability of
reaching consensus and the traffic volume.

20

=k
J
=1
-

iy
= A\
50° 0\
—_ I| L]
an-ﬁ II | \Il.
0 A A%
7 0.4 V&
= L\ ".
g |"% |II
C 0.2 [
o) % \
o | '1_1‘-.

0 e

0 10 20 30 40 50 60 70 80 90

Mumber of Attackers
(a) BA

1 -
2 RA
= \ R\
m DE IIII 1‘1:":
-g I', ."I"'-
‘5_ 0.6 \ I'k.ll
w0 \ | \
3 0.4 !
= I\|I.' |
@ \ |
202 A
(=] l B
&) L AN

06—40 20 30 40 50 60 70 80 90

Mumber of Attackers
(c) WS

—

2 ' “\:?,\

g 0.8 Ill {:'u

O |I '.I".

S |\

CLG‘E |I|I '.'\'.IH

" 1

ﬂ 0.4 ll'nl II.,I

[1 A

@ b '.I |

0 L 4

E 0.2 I\I \ II'.

U I \I:L..II L

u'l.'.l 10 20 30 40 50 60 70 80 90
Number of Attackers

(b) ER

Proposed Method (k=7) ——
Proposed Method (k=10) ——
Proposed Method (k=15)

Existing PBFT ——
Existing Method (k=7)
Existing Method (k=10)
Existing Method (k=15)

Figure 4.2: Consensus Probability in Proposed Method 11

21

ﬂ?ﬂﬂu

=

0 2000
EE'
-E-EIEIDD
30
g g 1000
<=

E 500

=

[1v]

= 0

@ 2500

=

o0 2000
EE'
-E-.EISCID
30
E g 1000f
<=

E 500

&

= 0

i0 20 30 40 50 60 70
Number of Attackers

(a) BA

80

0 10 20 30 40 50 60 7O
Number of Attackers

(c) WS

BO

Amount of
transmitted data (k Bytes)

=

2500

5
s

—
n
=]
b

=]
=]

g

=]

Number of Attackers
(b) ER

Proposed Method (k=7) ——
Proposed Method (k=10) ——

Proposed Method (k=15)

Existing PBFT —

Existing Method (k=7)
Existing Method (k=10) -
Existing Method (k=15)

Figure 4.3: Amount of Traffic in Proposed Method I

22

0 20 30 40 50 B0 70 &0

[=

Amount of
transmitted data (k Bytes)

Amount of
transmitted data (k Bytes)

1000
800
800

600
500
400
300
200
100

1000
800
800
T00
600
500
400
300
200
100

700 —

=]
=]

0g

10 20 30 40 50 60 70 80 90
Number of Attackers

(a) BA

10 20 30 40 50 60 70 80 90
NMumber of Attackers

(c) WS

[—
=
o O
[=

800

600

Amount of
transmitted data (k Bytes)

400

200

06—<0 20 30 40 50 60 70 80 90

Number of Attackers
(b) ER

Proposed Method (k=7) ——
Proposed Method (k=10) ——
Proposed Method (k=15) -

Existing PBFT ——
Existing Method (k=7)
Existing Method (k=10) -
Existing Method (k=15)

Figure 4.4: Amount of Traffic in Proposed Method 11

23

4.3.3 Traffic Volume against the Number of Clusters

—

1800
>1600¢
1400 |
1200}
1000

800

600

tes

Amount of
transmitted data (k B

Theoretical value of traffic
4001 BA

200! ER

. . WS

0 6 5 12 15
Number of Clusters

Figure 4.5: Traffic Volume against the Number of Clusters

Figure 4.5 illustrates the amount of traffic for the BA, ER, and WS models, with the number of
nodes and attackers set to 90 and 40, respectively. The theoretical value O(m? log m) for the traffic
volume, derived in Section 3.2, is also plotted for comparison. To observe the trends between the
simulation results and theoretical values, we added a constant to the theoretical values. Notably, the
lines for the BA and ER models overlap in the graph. Furthermore, the jagged nature of the curves
can be attributed to situations where, in cases of an even number of clusters, the number of supporting
clusters may equal the number of opposing ones. This can lead to instances where consensus is not
achieved, resulting in a lower probability of consensus formation compared to cases with an odd
number of clusters.

In all models, the amount of traffic increased with the number of clusters. Additionally, the ob-
served increase in traffic volume aligned closely with the theoretical value, confirming the robustness
of the theoretical analysis presented in Section 3.2. Since the theoretical values serve as approxima-
tions in terms of order of magnitude, the trends observed in both the theoretical and simulation results
were found to be consistent.

Table 4.2 presents a comparison of the upper limits of consensus formation and communication

24

Algorithm Fault-tolerant limit Communication complexity

PBFT [2] 1/3 on?)
NBFT [12] approx. 1/3 O([(n - 1)/m)?)
Hotstuff [18] 1/3 O(n)
Proposed Method max. 5/9 O(m? log m)

Table 4.2: Comparison with Other Algorithms

complexity between the proposed method and conventional methods. While the upper limit of con-
sensus formation for conventional methods is approximately 1/3, the proposed method achieves a
significant improvement, reaching 5/9. On the other hand, the communication complexity of the pro-
posed method is the highest, as confirmed by performance evaluation results showing that it generates
the largest amount of communication traffic.

As demonstrated so far, the proposed method consumes a significant amount of traffic. Therefore,
it is necessary to devise a method to mitigate this traffic consumption. Specifically, by leveraging
HotStuff [18], which achieves a communication complexity of O(N), we anticipate that the traffic
volume of the proposed method can be significantly reduced. Furthermore, the latest HotStuff-1
[19] reduces the number of phases required compared to the previous HotStuff-2 [20], which is also
expected to improve latency.

Future research should also explore the application of consensus mechanisms in sharding. This
investigation is crucial for enhancing the scalability and efficiency of blockchain systems. In par-
ticular, the theoretical analysis presented by on block time distributions in Byzantine fault-tolerant
consensus blockchains is highly relevant. By applying these insights to sharded architectures, we can
develop more efficient and secure consensus protocols that maintain the integrity and performance of
the blockchain as it scales.

25

Chapter 5

Conclusion

In this paper, we proposed a method to enhance resistance against Byzantine attacks by utiliz-
ing clustering and merging techniques. We compared the percentage of consensus formation and
the amount of communication traffic between the proposed method and conventional approaches.
Through simulation evaluations, we confirmed the following key findings:

e By applying the proposed method, it became possible to reach correct consensus even when
more than one-third of the participants were attackers.

e The proposed method enabled correct consensus to be reached even with up to 5/9 of the partici-
pants being attackers, which aligns with the performance limit of consensus probability derived
through theoretical analysis.

e The amount of traffic increased considerably compared to conventional methods due to the
rise in the number of communications and the volume of data exchanged. Additionally, as the
number of attackers increased, the interactions with other clusters also escalated, leading to
higher traffic.

e As the number of clusters increased, the traffic volume also grew. We derived the theoretical
upper limit of the communication overhead generated by the proposed method, and by com-
paring it to the simulation results—after adding a constant—we confirmed that both exhibit a
similar increasing trend.

In the future, we plan to devise a method to reduce the amount of traffic while maintaining the
probability of consensus.

26

Acknowledgement

I am deeply grateful to my supervisors, Professor Noriaki Kamiyama and Professor Akihiro Fuji-
hara, Chiba Institute of Technology. I would like to express my appreciation for their helpful, contin-
uing and considerable support, which enabled me to write and finish my master’s thesis.

I would also like to thank all lab members, with whom I spent almost all my lab life sharing our
thoughts and ideas, discussing research, and helping each other.

27

References

[1] G. Shapiro, et al., “ The Performance of Byzantine Fault Tolerant Blockchains,” in Proc. of the
19th International Symposium on Network Computing and Applications. IEEE, 2020, pp. 1-8.

[2] M. Castro, et al., “Practical byzantine fault tolerance,” in Proc. of third symposium on Operating
systems design and implementation (OSDI ~ 99), 1999, pp. 173-186.

[3] E. Buchman, et al., “ The latest gossip on BFT consensus, 7 arXiv preprint arXiv:1807.04938,
2018.

[4] O. Wu, et al., “ A performance evaluation method of queuing theory based on Cosmos cross-
chain platform,” CCF Trans. HPC, pp. 465-485, 2023.

[5] L. Astefanoaei et al., “Tenderbake: A solution to dynamic repeated consensus for blockchains,”
arXiv preprint arXiv:2001.11965, 2021.

[6] “Tezos,” accessed: Mar. 2024. [Online]. Available: https://tezos.com/

[7] T. Okada, et al., Enhancing Byzantine Fault Tolerance in Blockchain Networks Through Dy-
namic Clustering, ” in Proc. of the 2025 IEEE International Conference on Information Net-
working (ICOIN), 2025.

[8] A. Fujihara, “ Explaining temporal fluctuations of broadcast communications between valida-
tor nodes in a proof-of-stake blockchain, ” in Proc. of the Proceedings of Blockchain Kaigi
(BCK23), 2023, pp. 011004-1-011004-11.

[9] R. M. Othmen, et al., “ Simulation of Optimized Cluster Based PBFT Blockchain Validation
Process, ~ in Proc. of the IEEE Symposium on Computers and Communications (ISCC), 2023,
pp. 1317-1322.

[10] A.]J. Al-Musharaf, et al., “Improving Blockchain Consensus Mechanism via Network Clusters,
* in Proc. of the 2021 1st Babylon International Conference on Information Technology and
Science (BICITS), 2021, pp. 293-298.

[11] Y. Sun, Y. Fun, “Improved PBFT Algorithm Based on K-means clustering for Emergency
Scenario Swarm Robotic Systems, ” IEEE Access, 2023, pp. 121753-121765.

28

[12] J. Yang, et al., “ Improved Fault-Tolerant Consensus Based on the PBFT Algorithm, ” IEEE
Access, 2022, pp. 30274 - 30283.

[13] G. Wang, et al., “ SoK: Sharding on Blockchain, ” in Proc. of the 1st ACM Conference on
Advances in Financial Technologies (AFT ’ 19). Association for Computing Machinery, 2019,
pp- 41-61.

[14] B. Choi, et al., “ Scalable Network-Coded PBFT Consensus Algorithm, ” in Proc. of the 2019
IEEE International Symposium on Information Theory (ISIT), 2019, pp. 857-861.

[15] J. Xi, et al., “ A Comprehensive Survey on Sharding in Blockchains, ” Mobile Information
Systems, 2021.

[16] X.Liu, etal., “ A survey on blockchain sharding, ” ISA Transactions, 2023, pp. 30-43.

[17] A. Fujihara, “ Theoretical Analysis on Block Time Distributions in Byzantine Fault-Tolerant
Consensus Blockchains, ” in Proc. of the IEEE International Conference on Blockchain, 2024,
pp. 378-385.

[18] M. Yin, et al., “ HotStuff: BFT Consensus with Linearity and Responsiveness, ” in Proc. of
PODC’19: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347-356.

[19] D. Kang, et al., “ HotStuff-1: Linear Consensus with One-Phase Speculation, ” arXiv preprint
arXiv:2408.04728, 2024.

[20] S. Zhao, et al., “ HotStuff-2 vs. HotStuff: The Difference and Advantage,” arXiv preprint
arXiv:2403.18300, 2024.

29

Published Works

(1] FHE #F, kil &, I0TA ZH W2 ICN O4FEB AN, EFEREBEEYS ry bV —
7 > A7 I (NS) BF5E2, NS2022-219, 2023 43 H

[2] FH #F, ki E1E, ICN 2B 2 I0TA ZHWE=ar 5y AEMAR, BFIEHRE
SR ARE, B-6-21, 20234FE3 A

[3] FIH &, FiL #FRE, IOTAIC X % ICN O4RIEH AR, EFHEHREAEYS, 5524 H ICN
MERY—2r > ay 7, 20238 H

[4] Teppei Okada and Noriaki Kamiyama, “ Name Management Using IOTA in ICN, ” in Proc. of
the IEEE DAG-DLT 2024, May 2024.

[5] MIHE 8, Ei #ERE, PBFTICBIT 27 7 AX{tEHAWE-EY T UiEom L, &%
WEEERY VA =7 4 K&, N-2-05, 202449 H

[6] Teppei Okada, Noriaki Kamiyama and Akihiro Fujihara, “Enhancing Byzantine Fault Tolerance
in Blockchain Networks Through Dynamic Clustering,” in Proc. of the 2025 IEEE International
Conference on Information Networking (ICOIN), 2025.

[7]1 FIHE #5F, il &, BEBAL, #8220 2212k 3 70y r2F2—OEH Y
F UnitpEENE F, BEFBEEEES 2y P —27 A7 A (NS) IS, 202543 H

(8] MM $F, bl EE, BEAL ey 2F -0y rF UiitEEROEN 2 5 2
29 N & B9, BT IEREEYERE RS, B-11, 202543 A

30

