# DDoS Attack Detection System With Markov Model-RNN integrated Aggregate Based Congestion Control (ACC)

## 1. Research Background and Objective

[Research Background]

- Cyber Attacks like DDoS attack became an alarming threat in commercial networks.
- Probability based network packet classification by Aggregate based Congestion Control (ACC).

## [Challenges]

- Probability calculation does not take current network state and long term pattern in network into account.
- Thresholds for probability is not dynamic.

## [Research Objective]

Proposing a dynamic probability calculation and threshold update.

# 3. Random Early Detection (RED)

- RED prevents congestion by randomly dropping packets before the queue is full.
- It uses average queue size to decide when to start dropping packets.
- It avoids global synchronization and promotes fairness among network flows.



# 2. Aggregate Based Congestion Control (ACC)

## [Mechanism of ACC]

- Aggregate network packets according to common features.
- Check whether it is a high bandwidth traffic.
- Push the network traffic to rate limiter and random early detection segment.
- Report ACC agent and drop or keep packets according to probability.



#### Can Detect DDoS at the arrival of network packet.

# 4. Markov Model in ACC Agent

It can model aggregates of network packet that causes traffic and generate probability from one state to another.

$$P(X_{t+1} = s_j \mid X_t = s_i, X_{t-1}, \dots, X_0) = P(X_{t+1} = s_j \mid X_t = s_i)$$

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix}$$

Estimation of the probability that congestion is caused by a particular aggregate, and inform whether to trigger pushback.

 $\pi(a \mid s) = \operatorname{Prob}(\operatorname{action} a \operatorname{taken} \operatorname{in state} s)$ 

Modelling normal congestion and heavy congestion in ACC agent.

$$oldsymbol{\pi}_{t+1} = oldsymbol{\pi}_t \cdot oldsymbol{
m J}$$



#### **Recurrent Neural Network in** 5. ACC Agent

- RNNs predict future network congestion by learning patterns from past traffic data.
- Can be used different types of protocol dependent DDoS attack.

#### [Limitation]

- Detection time is delayed due to packet analysis
  - Cannot store long term network traffic pattern.  $\Rightarrow$
- Static probability and threshold.

### [Proposed Approach]

- Dynamic probability update through Markov model approach.
- Threshold update by Recurrent Neural Network (RNN).

- RNNs help in dynamic resource allocation and anomaly detection in aggregate traffic.
- It enable proactive congestion control by adjusting flow rates before congestion occurs.

$$h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$r_t = f(W_{hr}h_t + b_r)$$

RNN-LSTM (Long Term Short Memory) can store past traffic patterns.