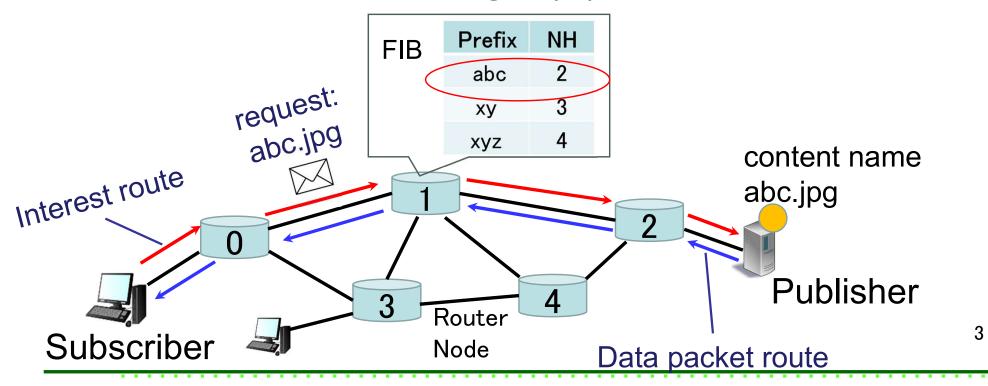
Content Placement for Reducing FIB Size in NDN Using GA (ICOIN 2025)

2025-01-16


Hiroki Hashimoto Noriaki Kamiyama Ritsumeikan University, Japan

Outline

- 1. Introduction
- 2. Propose method
 - Genetic Algorithm
 - Proposed method design
 - 3. Simulation parameter
 - 4. Result
- 3. Conclusion/Future work

Information-centric networking

- ICN (Information-centric networking)
 - Interest (request packet): Using content name not IP address
 - How to connect :
 - 1. Interest are referred FIB (Forwarding Information Base)
 - Data is send along the reverse route along which the interest pass
 - NDN (named data networking) is popular in ICN

Motivation

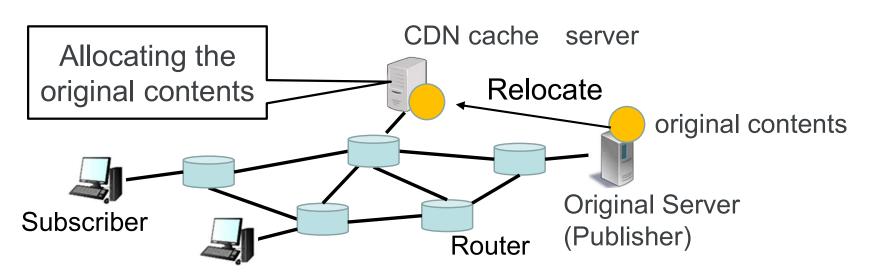
- Subject: The Scale of FIB on NDN
 - It is increased the number of Prefixes caused by larger networks
 - It is difficult to aggregate FIB entry due to the lack of locality in local domain names
 - →we need Large memory size and have much time to search match FIB entry
- Example: when it is considerate only Web contents NDN FIB: about 10⁹ entry * vs IP FIB: about 10⁵ entry

Prefix	NH
abc	0
xy	1
xyz	3

Prefix	NH	
223.1.1.1	0	NH: next hop
223.2.1.1	1	
224.1.1.3	2	

cano. Supporting the Web with an information centric

Previously Study* -1

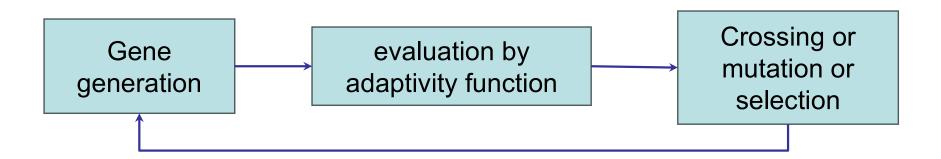

- The FIB entry aggregate method
 - LPM (Longest prefix matching)
 - Components : each part separated by "period"
 - The aggregate method
 - Sort URLs in reverse order
 - When both component and NH are same, their entries can aggregate

Before aggregation After aggregation **Prefix** NH **Prefix** NH R3 jp/post/zib jp/post/* R3 R3 jp/post/abs 2 jp/post/ac R4 jp/post/ac R4 3 3 com/google R5 com/google R5 4

^{*} Y. Sasaki, et al., Designing Content Placement of CDN for Improving Aggregation Effect of ICN FIBs,

Previously Study* -2

- Allocating the original contents by using CDN (Content Delivery Networking)
 - CDN can
 - advertise Prefixes of cached content to the network.
 - be hosted by publisher.
- → By allocating content with the same TLD or SLD to the same CDN cache server, we have effective aggregation of FIB entries


^{*} Y. Sasaki, et al., Designing Content Placement of CDN for Improving Aggregation Effect of ICN FIBs, ICOIN 2020.

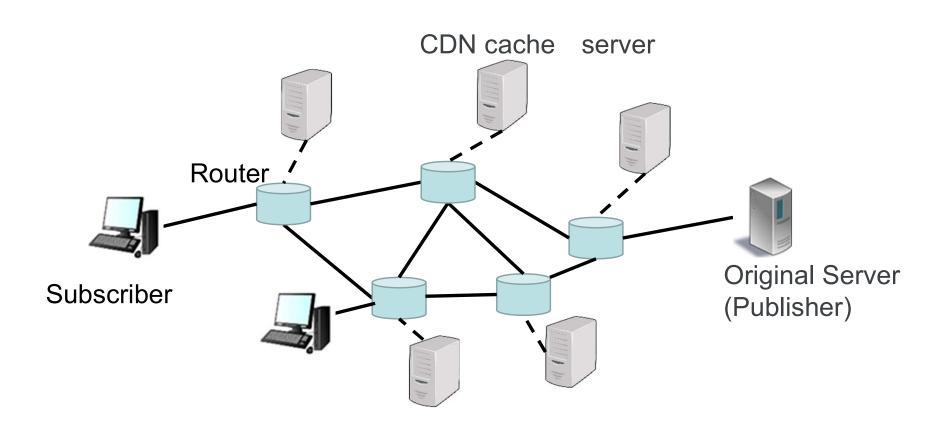
Aim

- However, content placement has influence in network quality
 - In terms of FIB size, it is desirable that contents with the same name are allocated on the same node
 - On the other hand, it is not desirable load concentration
 - The content placement is NP hard in heuristic method
- Therefore, we propose placing original contents that uses genetic algorithm (GA) to consider four evaluation criteria

Genetic algorithm(GA)

- meta-heuristic algorithms
- generated up until a pre-defined condition
 - Iteration of gene (=solution) generation and evaluation by adaptivity function
 - Leave highly adapted genes to the next generation

Proposed GA Design

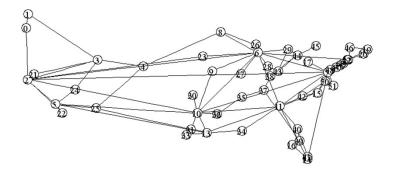

- \blacksquare Gene g_k : The result of content placement
- Unit of content on GA:
 - TLD contents set (except TLD "com" and "net")
 - SLD contents set (only TLD "com" and "net")
- Fitness function

$$A(g) = w_1(1 - E'_a) + w_2(1 - L'_a) + w_3(1 - C'_L) + w_4(1 - R'_c)$$

- E_a: Average FIB entry size
- L_a: Average Link Load
- C_L: Coefficient of variation of link load
- R_c : Loss of Availability
 - Normalization by generation $\Rightarrow E'_a$, L'_a , C'_L , R'_c
- weight: w_1, w_2, w_3, w_4

Network Modeling

- CDN is placed all the node in network
- The router caching is not considered in this research

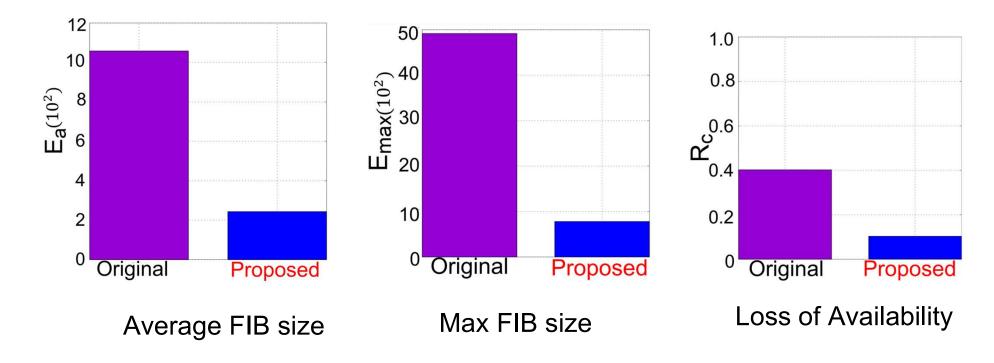


Content request

- Link Load
 - - f_{sd}: network flow between start node s and destination node d
 - F_l: Set of flows through link l
 - D(s): Access ratio of content request destination node s
 - p(d): Population ratio of requesting node d
- This research used 12,010 web objects for which distribution servers exist in the United States.
 - Each content has request rate
 - Calculate link load when requests appear from all nodes to each data at one time

Simulation parameter

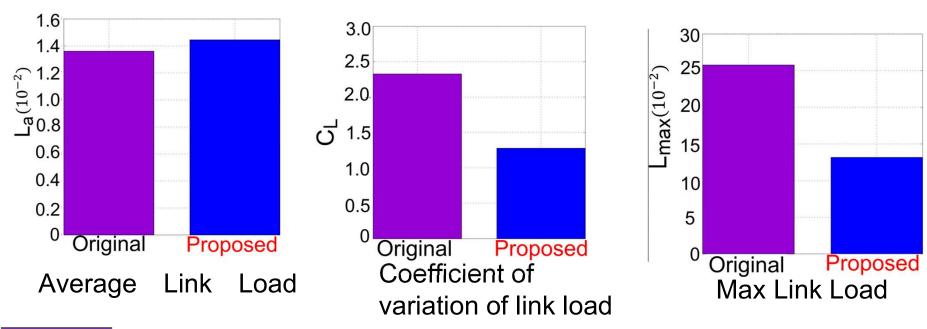
- The number of generation
 - G = 10
- The number of gene per one generation
 - I = 250
- The weight of fitness
 - $w_1, w_2, w_3, w_4 = 0.25$
- Topology: Allegiance Telecom
 - static configuration



- Evaluated by six evaluation criteria
 - Average FIB size
 - Coefficient of variation of link load
 - Loss of Availability
 - Average link load

- Max FIB size
- Max Link load

Result -1


- Reduces FIB size and content availability
 - The proposed method suppresses the increase in FIB entries while distributing content throughout the network

Original: content is delivered from the publisher's host Proposed: relocate contents placement by GA

Result -2

- Reduces link load coefficient of variation and maximum link load
- Average link load increased
 - Content is now allocating across the network, increasing the number of hops required to obtain content

Original: content is delivered from the publisher's host

Proposed: relocate contents placement by GA

Conclusion/Future work

- We proposed using genetic algorithm to allocate content by TLD and SLD and reduce FIB size for NDN
- It can distribute placement of content and reduce FIB size
- Average link load increases with equal weights
 - \blacksquare Can be reduced by setting larger weights on L_a

Future Work

- When we allocate contents, we are going to considerate contents moving cost.
- This is static replace method, so we need to consider active replacement method.