IOTA-based Micropayment of IoT Data

Keita Yashiki, Noriaki Kamiyama Ritsumeikan University, Japan

Micropayment in IoT Services

Users of IoT service frequently receive services.
Frequent small payments occur between service users and service platforms.

Micropayment Using Distributed Ledger Technology

 When payment is processed by single entity (centralized), single entity can falsify processing.

Payment processing by <u>distributed ledger technology</u>

→Blockchain, IOTA

Purpose of This Work

- Micropayment with small transactions
 - \rightarrow High fees are issue when using blockchain

- Apply IOTA, highly scalable distributed ledger technology, to IoT micropayment
 - No transaction fees by using IOTA
 - Lighter processing and smaller latency than making payments in bulk

ΙΟΤΑ

- Distributed ledger technology
 - No transaction fees
 - \rightarrow Low cost
 - High transaction processing speed
 - \rightarrow High scalability
- Directed acyclic graph (DAG) structure
 - New transaction selects two existing transactions.
 - \rightarrow Approval

Tip

Tip

Unapproved transactions in DAG, tangle graphs

- When new transaction X arrives
 - Transaction X authorizes A and C
 - The cumulative weight of other transactions that receive approval is increased by 3

How to Search for DAG

- Need to search for previously approved transactions
 - Transaction information for own past transactions

- DAG Search Method
 - Hash chain method
 - Binary search tree

Manage prefixes and IDs \rightarrow Direct access on DAG to obtain content names

- Breadth-first search
- Depth-first search

Search on DAG \rightarrow Search ends upon discovery.

Tip Selection Algorithm

Three tip selection algorithms to evaluate search time and memory requirements

Uniform random selection

- Randomly selects one from existing unauthorized transactions
- Unweighted random selection
 - Equal probability selection of transactions referenced from initial transaction
- Weighted random selection
 - Selecting transactions referenced from initial transaction with consideration of cumulative weights

Required Search Time

Tip selection: uniform random selection

- Number of transaction = search time in 100 and 1000 (URW)
- Search time increases in the order of hash chain method, binary search tree, depth-first search, breadth-first search

Required Amount of Memory

Tip selection: uniform random selection

Number of transactions = 100

Number of transactions = 1000

- Hash chain method, binary search tree, and DAG reduce memory requirements in that order
- When search time is important. \rightarrow hash method
- When emphasizing memory requirement \rightarrow DAG

Conclusion

Conclusion

- Proposed micropayment system using IOTA
- Without transaction fees
- Compared search time and memory requirement among four search methods for searching content names in IOTA
- Future work
 - Evaluation using actual equipment

This presentation is supported by the "Society for the Advancement of Science and Technology at Ritsumeikan"