Mobile Cacheを用いた被災情報共有システム

富森俊貴¹ 三角真² 上山憲昭¹ 立命館大学情報理工学部¹ 福岡大学工学部²

研究背景

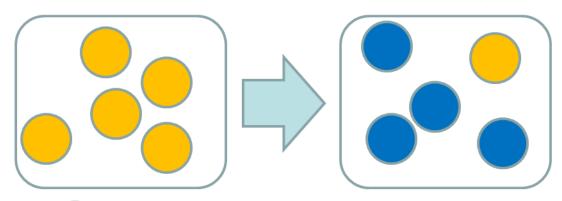
- 災害時の被災情報共有
 - 大規模災害発生時、被災者は避難所に向け避難開始
 - セルラーネットワークのインフラ損傷によりインターネット使用不可
 - 避難所までの経路上に通行困難箇所がある場合、迂回の必要
 - 周辺道路の被災情報を被災者へ迅速に伝える必要

DTN通信

- 基地局を介さずに端末間で直接通信することで情報共有
- 被災者間で道路の被災情報を共有する手段として期待

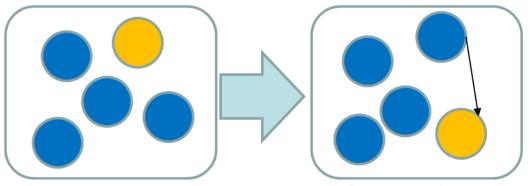
これまでの研究

- 端末間の直接通信を繰り返すとネットワーク全体での消費電力量増加
- 情報Boxを用いた災害情報共有
 - 端末間での通信回数を抑えるため被災情報を共有する情報Boxをコンビニなど 給電可能な地点に設置
 - 情報Boxから被災情報を収集
- ■課題
 - 情報Boxを事前に設置する必要
 - ■コンビニ店主等の協力
 - 設置や管理等のコスト

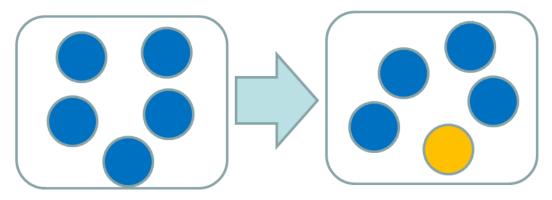

研究目的

- 集団内の一部の被災者の端末を情報Boxの機能を持つMobile Cacheとして利用
- 情報Box
 - 大容量のバッテリー
 - 避難者端末が送信した故障情報の受信,蓄積
 - 蓄積した情報を通信範囲内の端末に送信
- Mobile Cache
 - 避難者端末間の通信は全てブロードキャスト
 - 他端末よりも高頻度で故障情報をブロードキャスト
 - 消費電力量増加
- バッテリー残量や目的地を考慮してMobile Cacheとなる端末を自律的に選択、変更
- MAS (Multi-Agent-System)による性能評価

Mobile Cache端末の決定


- Mobile Cacheとなる端末の自律的な決定
- 以下の3パターンに従って決定

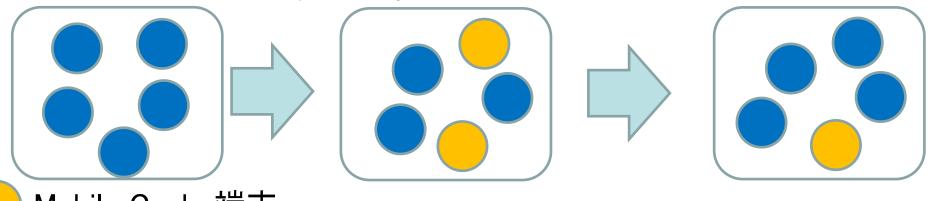
集団内のMobile Cache機能の集約



- Mobile Cache端末
- 非Mobile Cache端末

集団内のMobile Cacheの変更

集団内のMobile Cache端末の復活

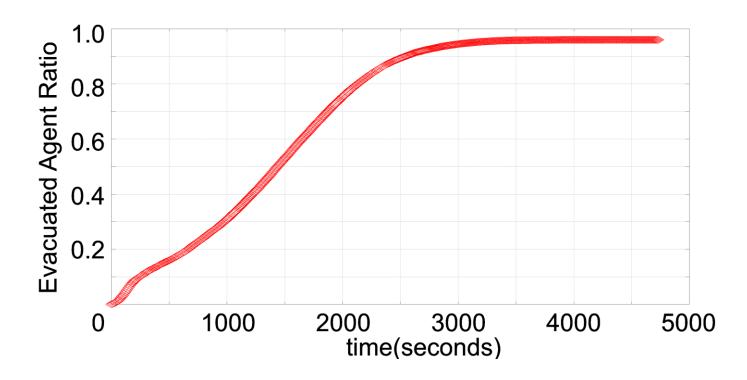


提案手法(1)

- 集団内でのMobile Cache機能の集約
 - 避難開始時は全ての端末がMobile Cache
 - ネゴシエーションを行い、Mobile Cache端末を削減
 - バッテリー残量の情報を目的地が同じ2つのMobile Cache端末間で交換
 - バッテリー残量が少ない方は自身が所持している情報を送信後、Mobile Cacheをやめ、残量が多い方のみがMobile Cacheを継続
 - ネゴシエーションを反復し、少数の端末にMobile Cache機能を集約
- 集団内のMobile Cacheの変更
 - 時間経過によりMobile Cache端末のバッテリー低下
 - 非Mobile Cache端末がブロードキャストの際, Mobile Cacheのバッテリー確認
 - Mobile Cache端末のバッテリー量が少なければ、Mobile Cache交代

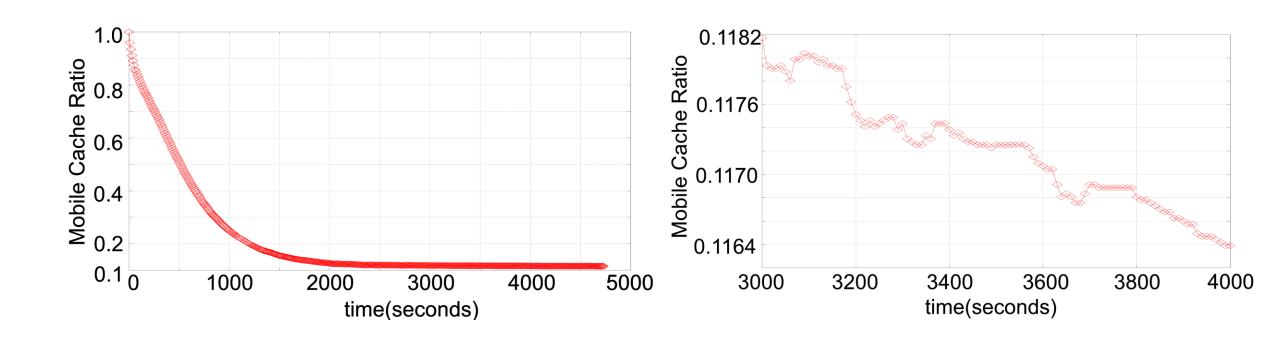
提案手法(2)

- 集団内のMobile Cache端末の復活
 - 集団の分裂などによりMobile Cache端末が不在
 - 一定の時間Mobile Cache端末からのブロードキャストを未確認
 - 自律的にMobile Cacheに変更
 - 同タイミングで複数端末のMobile Cacheが復活した際、再度ネゴシエーションを 行いMobile Cache機能集約


- ___ Mobile Cache端末
- 非Mobile Cache端末

MASのモデル

- 道路と故障箇所
 - 大阪市北区を対象地域としてOpenStreetMapの地図情報を使用
 - 全てのエッジからランダムに選ばれたエッジを故障箇所に設定
- ■避難の目的地
 - 北区内に避難する人:区内の避難所
 - 北区外に避難する人:地域境界ノード
- 避難行動
 - 故障箇所を無視して経路探索
 - 自身が所持する故障情報の更新に従い経路更新


性能評価

- シミュレーション条件
 - Mobile Cache同士のネゴシエーションは5~10秒でランダムに決定
 - 全エッジのうち1%を故障エッジに設定
 - 通信可能範囲: 10m, Mobile Cacheの復活: 60秒
- 避難完了者の割合とMobile Cacheの割合における時間変化を評価

性能評価

- Mobile Cacheの割合
 - シミュレーション開始後減少
 - 1500秒付近で減少スピード低下
 - Mobile Cache集約後も復活によりMobile Cache増加箇所有

まとめ

- 情報Boxの機能を持つMobile Cacheとなる端末の選択法を提案
- 大阪市北区の避難に提案手法を適用
- 時間経過に伴うMobile Cacheの減少, 避難完了者の増加を確認
- 今後の予定
 - 従来手法のアルゴリズム実装, 性能比較