
Evaluation and Analysis of Two Types of Attacks CPA and DDoS Targeting CDN caches

Jiaqi Liu Noriaki Kamiyama Ritsumeikan Univ

2024.03.01

Content Delivery Network

- Content Delivery Network (CDN)
 - Origin servers: Provide the original version of the content
 - Cache servers: Cache the copy of contents, and they are responsible for delivering that content to nearby users.
 - DNS servers: Respond user's request with the name of a cache server from which the content can be served faster.
- The feature of CDN
 - Serves a large portion of the Internet content
 - Provides a faster and highperformance experience
 - Reduce bandwidth costs

Attacks targeting CDN

- Distributed denial-of-service (DDoS)
 - Disrupt the normal traffic of the targeted server, service or network by overwhelming the target with a flood of Internet traffic.
- Cache pollution attack (CPA)
 - Pollute the cache with low-popularity content to degrade the performance of the cache

Existing research

- There are many methods to prevent DDoS or CPA but there are no existing research investigating on DDoS and CPA on cache server.
- Knowing the attacker how to optimize the attack, CDN provider can better defend the attack

Purpose of research

Propose the analytical model to evaluate the impact of DDoS or CPA.

- Analyzes the impact of specific scenarios on DDoS and CPA
- Analyzes the influence of different factors on the attack
 - CDN providers can control factors to reduce the impact of attacks

Analytical Model

M/M/1 queue

$$W = \frac{1}{\mu - \sum_{i=1}^{M} \lambda_i}$$

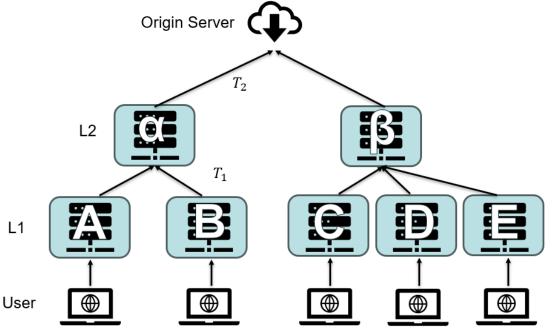
Definition
Average response time
Average service time
Number of contents
Poisson arrival rate of request for content i
Cache hit ratio of content i

Cache Server (CS)

The latency time T is spent when cache misses

Analytical Model

Che-Approximation
 $h_i \approx 1 - e^{-q_i t_c}$ $\sum_{i=1}^{M} h_i = C$


Parameter	Definition
<i>qi</i>	Request ratio of content i
С	Capacity of cache
t _c	Characteristic time

- The factor that affects average response time
 - Average service time (1/µ)
 - Arrival rate of request (λ)
 - Latency time (T)
 - Capacity of cache (C)

Multilayer CDN Model

Multiple layer

- Origin server provide the original version of the content
- L2 CSes caches content from the origin server and connect to L1 CSes
- L1 CSes caches content from L2 CSes and accommodate the user's request
- All CSes adopt LRU

Multilayer CDN Model

Average response time in CS A

$$r_A = W_A$$

$$r_{\alpha} = W_A + W_{\alpha} + T_1$$

$$r_0 = W_A + W_\alpha + W_0 + T_1 + T_2$$

-Cache hit in A

-Cache hit in
$$\boldsymbol{\alpha}$$

-Cache miss in A and $\boldsymbol{\alpha}$

 Average response time of content i when request arrives at CS A

$$R_A(i) = h_i^A r_A + (1 - h_i^A) h_i^\alpha r_\alpha + (1 - h_i^A) (1 - h_i^\alpha) r_O$$

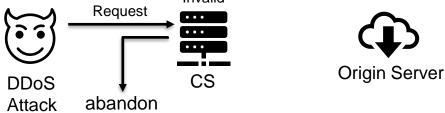
Average response time of all requests in CS A

$$\blacksquare \quad R_A = \frac{\sum_{i=1}^M R_A(i)}{M}$$

Evaluation: Simulation parameter

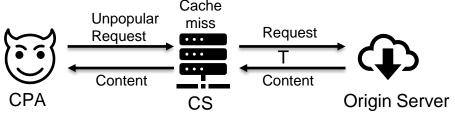
- Simulation parameter settings
 - Every CS has the same cache capacity (C)
 - Following the zip's law,

 $\lambda_i = 80, 9, 6, 4, 1$ in L1 CSes

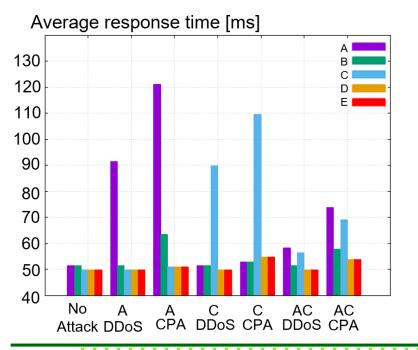

The offered load of each CS is
50% without attack

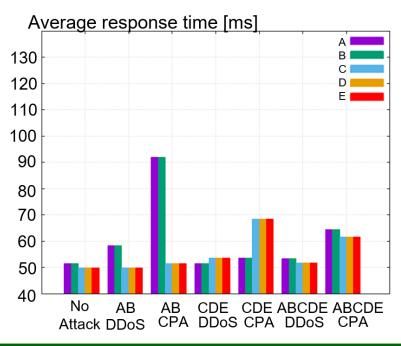
Parameter	Value
М	5
С	3
$\sum_{i=1}^{M} \lambda_i$	100 /s
$1/\mu$ of L1 CS	5ms
$1/\mu$ of CS α	5ms
1/ μ of CS β	3.3ms
$1/\mu$ of origin server	3.3ms
<i>T</i> ₁	50ms
<i>T</i> ₂	30ms

Evaluation: Attack definition


DDoS

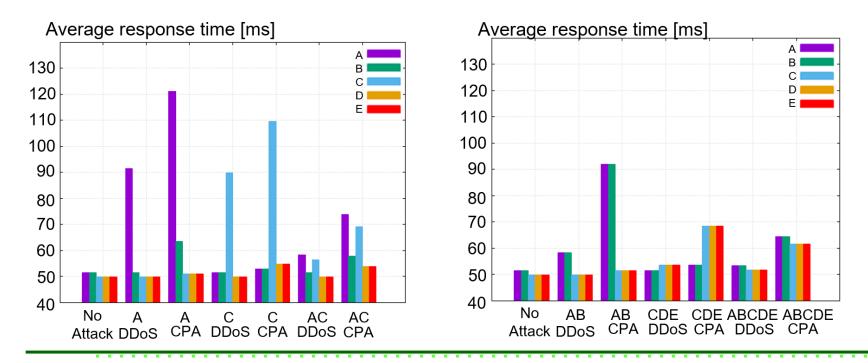
Sends request packets to invalid contents that will increase the processing load of CSes and invalid contents are not stored in the CS


CPA


Sends request packets to unpopular contents to decrease popular contents' cache hit ratio and increase the processing load

Evaluation: Attack with limited resources

- Attack with limited resources
 - Assume that the attacker has limited resources to attack and set attacker's request rate 80/s
 - The attacker will assign requests to different CS
 - When the attacker send request packets to multiple CSes, it equally sends packets among the CSes

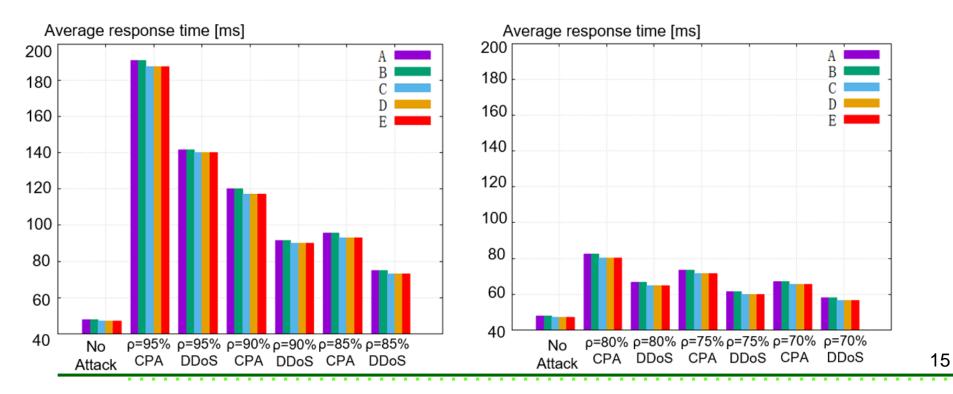


Evaluation: Attack with limited resources

Evaluation

- CPA largely increased the response time of CSes
- CPA also increased the response time of other CSes
- CPA is still effective when multiple CSes are attacked but DDoS attack has little effect because the resources are dispersed

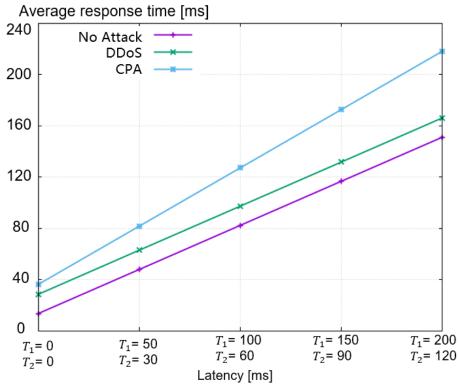
Evaluation: Attack under protection


- Attack under protection mechanism
 - Assume CSes can bound the offered load of CSes below the threshold ρ even when DDoS or CPA occurs
 - Attacker will attack all CSes as much as possible
 - Reset the average service time in some CSes

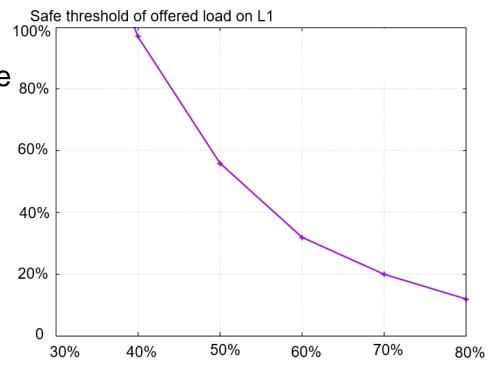
Parameter	Value
$1/\mu$ of CS α	3.3ms
$1/\mu$ of CS β	2.2ms
$1/\mu$ of origin server	2.2ms

Evaluation: Attack under protection

Evaluation


- Compared with case of DDoS attack, the CPA apparently increased the response time of CSes with the same ρ
- When ρ becomes low, the effect of both attacks become weak, and the advantage of CPA also become weak.

Evaluation: Factors


- Latency
 - We obtained the average response time for different latency based on the attacks under protection
 - As the latency increased, the gap between CPA and DDoS attack became larger, indicating that CPA was

sensitive to latency.

Evaluation: Factors

- Offered load
 - Safe threshold
 - The maximum offered load under the normal serve of the origin service
 - When the origin server ¹ load is less than 39%, safe threshold exceed 100%
 - As the offered load of origin server increases, the security threshold decreases sharply.

Offered Load of origin server without attack

Conclusion

- We used the M/M/1 queue model to derive the response time for CSes in CDN
- We build a multi-layer CDN model according to the actual CDN, and compared the response time under different attacks
- We investigated factors, and we revealed the potential threats in the multi-layer CDN model.

- OVERLEAP
- CACHE HIT RATIO CHART
- MORE SERVER ON L2.
- LRU LFU