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Abstract Mobile crowdsensing has become a popular paradigm for collecting data from smart device users. Traditional
research mainly considered on designing incentive mechanism based on users’ effort to provide sensing data without
considering users’ ability to obtain the data. In this paper, users’ ability to obtain the data has been considered to maximize the
crowdsensing platform’s data quality when designing the price based incentive mechanism for users. Our proposed optimal
pricing based incentive mechanism is validated by numerical simulations.
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1. Introduction

Internet of Things (IoT) services are expected to enrich life
of people through utilizing various sensing data obtained by
many IoT devices [1]. IoT services consist of IoT devices,
IoT platforms, and service consumers. IoT devices measure
various environmental data, e.g., temperature, humidity, and
hazardous substances concentration, and provide the sensed
data to the IoT platforms. After analyzing the collected
data, the IoT platforms extract various information and
knowledges which are useful to consumers, and provide
various services utilizing the obtained information and
knowledges to service consumers.
Sensing functions measuring various environmental data

are provided to many smartphones recently. Because of
proliferation of smartphones with embedded sensors, mobile
users become active contributors providing various kinds
of sensing data, and mobile crowdsensing has attracted a
wide attention as a new scheme, in which smartphones is
seen as a kind of IoT devices [2]. However, smartphone
users are not under control of the IoT platforms, and
they selfishly determine how much effort they make on
acquiring the sensing data by smartphones. To collect
sensing data from smartphone users, the IoT platforms are
required to pay incentives to smartphone users, and many
current commercial crowdsensing systems, e.g., Amazon
Mechanical Turk, post a fixed price to smartphone users
to incentivize participation [3]. However, the quality of
sensing data will depend on the effort of smartphone users
in crowdsensing, so the effort of smartphone users should
be reflected on the incentive paid to smartphone users to
give them a motivation to make higher efforts on acquiring
sensing data.
By reflecting the quality of sensing data on the price paid

to smartphone users, IoT platforms can expect smartphone
users to make more effort on improving the quality of
sensing data. Therefore, some existing works proposed to
give smartphone users incentivizes depending on the data
value, i.e., quality of data [4][5][6]. The quality of sensing
data depends on the ability of smartphone users in sensing
data, so the achieved quality is different among smartphone

users even when they make the same effort. The IoT
platforms can expect to collect sensing data with high quality
by smaller amount of payment if they pay the incentive
to smartphone users with higher ability to acquire precise
data. The total amount of incentives which the IoT platforms
can afford paying to smartphone users is limited, so the
IoT platforms need to carefully select smartphone users to
which incentives are paid to maximize the total quality of
sensing data collected under the budget constraint of the IoT
platforms. However, existing incentive mechanisms did not
consider the ability of smartphone users on sensing data as
well as the constraint of the total budget of IoT platform.
In this paper, we propose a new incentive mechanism

for smartphone users to provide precise sensing data to the
IoT platforms by formulating a data quality maximization
problem. The optimal solution is obtained and the numerical
evaluation has proved the effectiveness of our work.

2. Related Works

There are some existing works proposed to use prices paid
to smartphone users to incentivize them to provide sensing
data. Lee et al. proposed a reverse auction model for setting
prices [7], and Jin et al. also proposed a double auction
model directly matching IoT devices and service consumers
[8][9]. However, the IoT platforms cannot maximize the
value of data collected from the smartphone users because
smartphone users do not know the quality of data they
provide to the IoT platforms. Han et al. considered the
effort of smartphone users in sensing data by setting the price
posted to smartphone users so that the cost of IoT platforms,
i.e., the total amount of incentive paid to smartphone users,
was minimized when the distribution of quality of data
can be estimated from the efforts of smartphone users [3].
However, the fixed price was posted to all smartphone users,
so the IoT platforms cannot incentivize smartphone users to
make higher effort to get sensing data.
To incentive smartphone users to make higher effort on

acquiring sensing data with higher quality, the price paid
to each smartphone user should depend on the quality of
sensing data provided to the IoT platforms. Some existing
works proposed to set the price based on the value of sensing
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data. For example, Niyato et al. proposed to set the fee
obtained from service consumers based on the value of
sensing data which was defined by the detection probability
of event [10]. However, this method cannot be applied for
setting the incentive paid to IoT devices, i.e., smartphone
users.
Peng et al. proposed to set the incentive based on

the estimated quality of sensing data provided by each
smartphone user, so smartphone users were motivated to
make effort to improve the quality of sensing data [5]. Jin
et al. also proposed to set the incentives paid to smartphone
users so that the profit of IoT platformswasmaximizedwhen
smartphone users maximized their utility by optimizing the
variance of error distribution of sensing data which was
assume to obey the Gauss distribution [4]. Moreover, Zheng
et al. also proposed to set the incentives paid to smartphone
users based on the accuracy of sensing data which was
estimated by Gaussian Process [6]. However, these methods
did not consider both the ability of smartphone users to
acquire sensing data and the budget of IoT platforms, so the
IoT platforms cannot maximize the total quality of sensing
data with the budget constraint.

3. System model

In this paper, we only consider one specific location l. The
smartphone users’ set at location l is denoted as Nl =
{1, ..., Nl}. N ∗

l ⊆Nl denotes the smartphone users’ set in
which smartphone users provide data for the IoT platform at
location l. The quality of data is defined as follows in Eq.(1).

qi(si) = γi ln(1 + si) (1)

where γi is the reputation of smartphone user i∈Nl, which
is recorded by IoT platform. si is smartphone user i’ effort
to generate data.
The cost of data is defined as follows in Eq.(2).

ci(si) = λisi (2)

where λi the cost parameter per unit effort.
smartphone users’ utility is defined as follows in Eq.(3).

ui(si) = piqi(si)− ci(si)

= piγi ln(1 + si)− λisi
(3)

where pi is the price per unit data quality paid from IoT
platform. piqi(si) is the payment by IoT platform, which
is proportional to smartphone users’ data quality. Please
note that IoT platform sets the payment from its budget
Bl. Given the payment from IoT platform, smartphone
user i tries to maximize his/her utility by setting suitable si.
Therefore, a utility maximization problem for smartphone
users is formulated as follows.

max
si

ui(si)

s.t. si ≤ 0
(4)

Proposition 1. The solution for problem in Eq.(4) is as
follows.

s∗i =
γi
λi

pi − 1 (5)

Proof: Since d2ui

ds2i
= − piγi

(1+si)2
< 0, then optimal solution

exists for problem defined in Eq.(4). By setting dui

dsi
= 0, the

optimal solution can be obtained as follows.

s∗i =
γi
λi

pi − 1 (6)

Q.E.D

4. Quality maximization problem

Given a budget Bl for location l, IoT platform tries to
maximize the sum of data quality at location l. A quality
maximization problem (QMP) is formulated as follows in
Eq.(7).

max
pi

∑
i∈N∗

l

qi(si)

s.t.
∑
i∈N∗

l

piqi(si) ≤ Bl

ui ≥ 0, ∀i ∈ Nl

pi ≥ 0, ∀i ∈ Nl

(7)

substitue s∗i = γi

λi
pi − 1 to the objective function and

constraint, we have the following new problem

max
pi

∑
i∈N∗

l

qi(s
∗
i )

= max
pi

∑
i∈N∗

l

γi ln(
γi
λi

pi)

s.t.
∑
i∈N∗

l

piqi(s
∗
i ) =

∑
i∈N∗

l

piγi ln(
γi
λi

pi) ≤ Bl

pi ≥ 0, ∀i ∈ N ∗
l

(8)

Please note that the condition ui ≥ 0 in Eq.(7) is no longer
needed in the new problem in Eq.(8) since when substitute
the optimal s∗i to the objective function, ui is maximized.

5. Theoretic analysis

As for the objective function of the problem defined in
Eq.(8), we have the following Proposition 2.

Proposition 2. The objective function of the new problem in
Eq.(8) is concave.

Please refer to AppendixA.1 for the proof of Proposition
2.

Definition 1. The Lambert W function [11] is a set of
functions that are the inverse of the function f(z) = zez ,
where ez is the exponential function, and z is any complex
number. We can express it as follows.

z = f−1 = W (zez) (9)

By substituting z0 = zez into the Eq.(9), we get the definition
of the W function as follows.

z0 = W (z0)e
W (z0) (10)

2
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Properties of Lambert W function [11] are as follows.

• Property (1): The exponential of Lambert W function
is as follows.

eW (z) =
z

W (z)
(11)

• Property (2): The derivative of Lambert W function is
as follows.

dW
dz

=
W (z)

z(1 +W (z))
for z ̸∈

{
0,−1

e

}
(12)

Lemma 1. As for the following equation in Eq.(13),m and
n are the constants, x is the variable.

m =
1

x
· 1

[ln(nx) + 1]
(13)

Its solution is as follows.

x =
eW (ne

m )

ne
(14)

or
x =

1

mW (nem )
(15)

whereW (·) is the Lambert W function defined in Definition
1.

Please refer to Appendix A.2 for the proof of Lemma 1.
The solution is illustrated in the following Proposition 3.

Proposition 3. The solution is for Eq.(7) is p∗i = h′
i(α

∗),
where function h′

i(α
∗) is defined in Eq.(33),

p∗i = h′
i(α) =

λie
W (

eγi
λiα

)

eγi
(16)

and α∗ is determined by Eq.(42).

G(α) = Bl (17)

where

G(α) =
∑
i∈N∗

l

γi[W ( γie
λiα

)− 1]

α[1 +W ( γie
λiα

)]

+
∑
i∈N∗

l

[ γi
αW ( γie

λiα
)[1 +W ( γie

λiα
)]
ln(

γi
λi

· 1

αW ( γie
λiα

)
)
]

(18)

Please refer to Appendix A.3 for the proof of Proposition
3. It is difficult to get the explicit solution for α∗, we will get
the optimal solution α∗ as well as p∗i by numeric analysis.

6. Numeric analysis

In this section, the performances of our optimal pricing
based incentive mechanism are evaluated by comparing
them with fixed pricing based incentive mechanism.
We have implemented a simulator by Python 2.7.1. The

number of smartphone users N is assumed as 10, and the
smartphone users’ reputation parameter γi (∀i ∈ Nl) is
extracted from uniform distribution U[10, 20]. smartphone
users’ cost parameter λi (∀i ∈ Nl) is extracted from uniform

Fig. 1 Budget Bl and Total data quality vs. α.

distribution U[2, 8].
Firstly, we find the optimal solution by numeric analysis.

According to the theoretic analysis in section 5, to find the
optimal Lagrangian multiplier α is important to solve the
primary problem Eq.(4). It is difficult to get explicit solution
for α by Eq.(42) We set α’s value from 0.05 to 0.46 by step
0.005, and calculate G(α)’s value by Eq.(42) ( Please note
that G(α)’s value is equal to Bl). Fig. 1 shows how the
budget Bl and total data quality changes with different α
from from 0.05 to 0.46. Therefore, the optimal solution α∗

can easily be gotten from Fig. 1. Once optimal α∗ is given,
the value of user i’s optimal price p∗i , optimal effort s∗i , and
corresponding data quality qi(s

∗
i ) can also be gotten from

Eq.(33), Eq.(5), and Eq.(1).
Secondly, we compare our optimal pricing based incentive

mechanism with fixed pricing based incentive mechanism.
As for fixed pricing based incentive mechanism, the IoT
platform pays for all the smartphone users with the same
price. The methods to calculate for optimal effort and data
quality are the same with that of optimal pricing based
incentive mechanism. Fig. 2 shows the total data quality
of optimal pricing based incentive mechanism and fixed
pricing based incentive mechanism. Both of them increase
with the budget Bl. The total data quality of our proposed
optimal pricing based incentive mechanism are much higher.
The reason behind this phenomena is that our proposed
incentive mechanism sets different incentive for different
smartphone users to maximize the data quality provided by
smartphone user.
Fig. 3 show the comparison between the price of our

Fig. 2 Total data quality comparison.
3
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Fig. 3 Price comparison when Bl = 403.

Fig. 4 Payment comparison when Bl = 403.

proposed incentive mechanism pi (∀i ∈ Nl) and the fixed
pricing incentive mechanism when the budget Bl is 403.
It can be seen that the price of our proposed incentive
mechanism varies with different smartphone users. Fig. 4
show the payment of IoT platform piqi(si) when the budget
Bl is 403. The reason is that the fixed prices are higher
than the optimal prices in our proposed mechanism as shown
in Fig. 3 for user 6 and 9. Then, according to Eq. (5)
in Proposition 1, user 6 and 9’s effort is much higher.
According to the payment formula piqi(si), the payment for
user 6 and 9 are much higher than our proposed incentive
mechanism as shown in Fig. 4. Our optimal pricing based
incentive mechanism tries to maximize the total quality of
sensing data as defined in Eq. (7) by allocating the budgetBl

in global manner over different users, while the fixed pricing
incentive mechanism does not consider the total quality of
sensing data maximization.
Fig. 5 shows the data quality comparison. It shows the

different data qualities of different smartphone users are
different. And the data quality of our proposed incentive
mechanism is much higher than that of fixed pricing
incentive mechanism.

7. Conclusion

In this paper, we propose to set the price paid to
smartphone users depending on the ability of acquiring
sensing data which is estimated through the reputation of
users to maximize the quality of data provided by the
users. We formalize the data quality optimization problem
under the platform’s budget constraint, and the optimum

Fig. 5 Data quality comparison when Bl = 403.

price is analyzed by using the Lambert W function and
Karush-Kuhn-Tucker (KKT) conditions. Numeric analysis
validated our proposed incentive mechanism is effective
and showed the the total data quality is maximized for the
platform.
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Appendix

A.1 Proof of Proposition 2

We define a function as follows:

fi(pi) = γi ln(
γi
λi

pi) (19)

The second-order differentiation of fi(pi) is as follows.

d2fi
dp2i

= − γi
p2i

(20)

Because λi > 0, it is obvious that d2fi
dp2

i
< 0. Thus, fi(pi) is

a concave function of pi.
We define function the objective function of Eq.(8) as

follows.

f(p) =
∑
i∈N∗

l

γi ln(
γi
λi

pi) (21)

where p = {p1, p2, ..., pN∗
l
} is a vector. Then we can

express f(p) by fi(pi) as follows.

f(p) =
∑
i∈N∗

l

fi(pi) (22)

Since f(p) is nonnegative weighted sums of concave
functions fi(pi) (see section 3.2.1 of book [?]), then f(p)
is concave.

A.2 Proof of Lemma 1

Proof: We define y = lnnx, then x = ey

n . By substituting
x = ey

n to Eq.(13), we have the transformed one as folllows.

m =
n

ey
· 1

(y + 1)
(23)

or Eq.(23) can be expressed as follows.

e(y+1)(y + 1) =
ne

m
(24)

According the definition of Lambert W function, we can
have the solution y of Eq.(24) as follows.

y = W (
ne

m
)− 1 (25)

Then x can be expressed as follows.

x =
e[W (ne

m )−1]

n
=

eW (ne
m )

ne
(26)

According to property (1) of Lambert W function, x can also
be expressed as follows.

x =
eW (ne

m )

ne
=

ne
m

W (ne
m )

ne
=

1

mW (nem )
(27)

A.3 Proof of Proposition 3

Proof: The Lagrangian of the problem in Eq.(8) is as
follows.

L(p, α, β) = −f(p)

+ α
[ ∑
i∈N∗

l

piγi ln(
γi
λi

pi)−Bl

]
−

∑
i∈N∗

l

βipi

(28)

where α ≥ 0, βi ≥ 0, β = (β1, ..., βN∗
l
) is the

Lagrangian dual variable (or Lagrangian multiplier). The
Karush-Kuhn-Tucker (KKT) conditions [?] for optimality
are as follows.

Primal constraints:∑
l∈N∗

l
pi −Bl ≤ 0

pi ≥ 0
Dual constraints:

α ≥ 0
βi ≥ 0, ∀i ∈ N∗

l

Complementary slackness:
α(

∑
i∈N∗

l
piγi ln( γi

λi
pi)−Bl) = 0

βipi = 0, ∀i ∈ N ∗
l

Gradient of Lagrangian with respect to pi vanishes:
∇L(p, α, β) = 0

(29)
∇L(p, α, β) = −γi

pi
+ αγi[ln(

γi
λi

pi) + 1]− βi = 0 (30)

From Eq.(30), we have

γi
pi

= αγi[ln(
γi
λi

pi) + 1]− βi (31)

It is obvious that pi > 0, then βi = 0, we have

α =
1

p∗i
· 1

[ln( γi

λi
p∗i ) + 1]

(32)

Eq.(32) has the same structure of Eq.(13) in Lemma 1 if we
assume thatm = α, and n = γi

λi
. The solution of p∗i can be

easily obtained by Lemma 1 as follows.

p∗i = h′
i(α) =

λie
W (

eγi
λiα

)

eγi
=

1

αW ( γie
λiα

)
(33)

where h′
i(α) is the function used to express p∗i . By

substituting property (2) of Lambert W function, the
derivative of h′

i(α) can be obtained as follows.

h′
i(α) = − 1

α2[1 +W ( γie
λiα

)]
(34)

Since λi > 0, then λi

pi
= α > 0. By complementary

slackness, we have the following conditions.∑
i∈N∗

l

piγi ln(
γi
λi

pi)−Bl = 0 (35)

Now we formulate the dual problem.
By substituting Eq.(33) to the Lagrangian Eq.(28), we have

5
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the objective function of the dual problem as follows.

D(α, β) = L(p∗, α, β)

=− f(p∗) + α
[ ∑
i∈N∗

l

p∗i γi ln(
γi
λi

p∗i )−Bl

]
−

∑
i∈N∗

l

βip
∗
i

=−
∑
i∈N∗

l

γi ln(
γi
λi

h′
i(α))

+ α
[ ∑
i∈N∗

l

h′
i(α)γi ln(

γi
λi

h′
i(α))−Bl

]
(36)

The formal dual problem is then defined as follows.

maxD(α, β)

s.t. α ≥ 0

βi ≥ 0, ∀i ∈ N ∗
l

(37)

Since we have confirmed that βi = 0, then the dual problem
is transformed to the following one.

maxD(α, 0)

s.t. α ≥ 0
(38)

The first order differentiation with respect to α ofD(α, 0) is
as follows.

∂D(α, 0)

∂α
=

∑
i∈N∗

l

γih
′
i(α)

[
α− 1

hi(α)

]
+

∑
i∈N∗

l

hi(α)γi ln(
γi
λi

hi(α))−Bl

+ α

[ ∑
i∈N∗

l

[
h′
i(α)γi ln(

γi
λi

hi(α))
]] (39)

By substituting Eq.(33) and Eq.(34), we have

∂D(α, 0)

∂α
= −Bl +

∑
i∈N∗

l

γi[W ( γie
λiα

)− 1]

α[1 +W ( γie
λiα

)]

+
∑
i∈N∗

l

[ γi
αW ( γie

λiα
)[1 +W ( γie

λiα
)]
ln(

γi
λi

· 1

αW ( γie
λiα

)
)
]
(40)

We define a function G(α) as follows.

G(α) =
∑
i∈N∗

l

γi[W ( γie
λiα

)− 1]

α[1 +W ( γie
λiα

)]

+
∑
i∈N∗

l

[ γi
αW ( γie

λiα
)[1 +W ( γie

λiα
)]
ln(

γi
λi

· 1

αW ( γie
λiα

)
)
]

(41)

The point α∗ satisfy the following Eq.(42) is the optimal
solution for the dual problem.

G(α) = Bl (42)

It is difficult to get the explicit solution for α∗, we will get
the optimal solution α∗ as well as p∗i by numeric analysis.
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