This is the author-submitted version of the following article: Yu Sasaki, Noriaki Kamiyama, and Yusheng Ji, "Designing Content Placement of CDN for Improving Aggregation Effect
of ICN FIBs,” in Proceedings of 35th International Conference on Information Networking (ICOIN 2020), Barcelona, Jan. 2020 (DOI: 10.1109/ICOIN48656.2020.9016448). The
original publication is available at https://ieeexplore.ieee.org/document/9016448 (©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Designing Content Placement of CDN for
Improving Aggregation Effect of ICN FIBs

Yu Sasaki*, Noriaki Kamiyama*, and Yusheng Jif
*Faculty of Engineering, Fukuoka University, Fukuoka 814-0180, Japan
Email: t1161252@cis.fukuoka-u.ac.jp, kamiyama@fukuoka-u.ac.jp
National Institute of Informatics, Tokyo 101-8430, Japan
Email: kei@nii.ac.jp

Abstract—Information-centric networking (ICN) has attracted
wide attention as a new network architecture which can efficiently
deliver digital content and Internet of Things (IoT) data. How-
ever, prefix aggregation of FIB (forwarding information base)
of ICN routers is difficult because the organization names are
independent of location. In this paper, we propose to use the CDN
(content delivery network) as a method of allocating originals of
content at routers to effectively reduce the size of FIBs of ICN
routers. Using the measured data of web-content location, we
evaluate the proposed algorithm of allocating web content at
routers and show that the proposed method can reduce the size
of FIBs by about 45%.

I. INTRODUCTION

Traffic generated by delivering video content including user
generated content (UGC), e.g., YouTube, and rich content
produced by content providers, e.g., movie and dramas, has
dominated a large part of traffic on the Internet. Moreover,
Internet of Things (IoT) is becoming a reality in smart
homes, smart buildings and smart cities, which produce huge
amounts of sensor readings that need to be processed to
control actuators. As a new network architecture efficiently
delivering video content and sensor data of IoT, information-
centric networking (ICN), which caches content at routers
and routes packets using content name, has attracted wide
attention thanks to various merits [6]. To realize the idea of
ICN, various networks, such as TRIAD [8], content-centric
networking (CCN) [12], data-oriented network architecture
(DONA) [13], and named data networking (NDN) [21], have
been proposed [20]. In this paper, we assume NDN as the
architecture of ICN.

In NDN, packets of requesting content items are called
Interests. Similar to IP routers of the Internet, NDN routers
transfer Interests by looking up the FIB (forwarding infor-
mation base). Although the FIB in IP routers is matching
table between the prefix of destination IP address, i.e., the
network address, and the output port, the FIB in NDN router
is matching table between the prefix of content name and the
output face'. Content name is a concatenation of prefix and
content ID, e.g., “fukuoka-u/sample.jpg”where “fukuoka-u” is
a prefix, and “sample.jpg” is a content ID. In NDN, originals
of content exist at hosts of publishers, and publishers advertise
the prefix of content name to adjacent routers [10]. NDN

'In NDN, an output port of a router is called output face.

Routers receiving the prefix advertisement configure FIBs so
that an Interest sent from the subscriber, i.e., user, is transferred
to the host of publisher owing the requested content.

If we make entries for all the possible prefixes in the
FIBs, the required memory size of FIBs seriously increases.
Therefore, aggregating FIB entries is indispensable to reduce
the memory cost of FIBs. Network providers assign a part of
their assigned address block to their customer organizations,
so the IP addresses have the geographical locality, and the IP
addresses are hierarchical structure, i.e., IP addresses in nearby
areas have identical bit patterns in the upper digit. On the other
hand, although hosts of publishers providing content of the
same organization tend to exist in the same area, there is no
geographical locality in the name of organizations. Therefore,
prefix aggregation in NDN is more difficult compared with that
in IP networks. For example, when considering web pages as
content, there are about 10! content names, and there are
about 10° prefixes of content name after aggregating prefixes
of the same organization into one prefix [7]. Because prefix
aggregation among different organizations is difficult, about
10° entries are necessary in each FIB in NDN [7], whereas
just about 105 entries are necessary in each FIB in IP networks.
When using the entry lookup based on the hash tables [19],
several million M bytes memory is required in FIB even for
several million prefixes, so implementing FIBs using SRAM
is difficult.

In the Internet, CDN (content delivery network) in which
content items are delivered from cache servers provided in
many networks has been widely used to improve the quality of
content delivery and reduce the amount of traffic in networks
[15]. Using NDN, content items are more likely delivered from
nearby routers to users, so the purpose of CDN, i.e., improving
user quality and reducing the network traffic, is satisfied by
NDN. Cache servers of CDN can also advertise prefixes of
cached content to the networks [3], and cache servers of
CDN can also become the hosts of publishers. Therefore, in
this paper, we propose to improve the aggregation effect of
FIB entries of NDN routers by carefully allocating copies
of content at cache servers of CDN. The contribution of this
manuscript is summarized as follows.

« By browsing many webpages, we measure the location

of content of webpages, and we evaluate the aggregation
degree of FIB entries based on the measured location of

web content.

o We propose an algorithm allocating web content at net-
work nodes so that the required size of FIBs of NDN is
effectively reduced.

o For the URLs obtained by browsing many webpages, we
apply the proposed algorithm allocation web content at
network nodes, and we evaluate the reduction effect of
NDN FIBs.

In Section II, we briefly summarize the related works, and we
show the results of aggregating FIB entries of NDN based on
the measured location of web content in Section III. In Section
IV, we show the proposed algorithm of allocating web content
at nodes and show the numerical results. Finally, we conclude
this manuscript in Section V.

II. RELATED WORKS

We can summarize the existing methods of reducing the
number of entries required in the FIB of ICN routers into
the four categories: (i) partial caching, (ii) route aggregation,
(iii) flooding, and (iv) bloom filter. In the first approach,
i.e., partial caching, FIB entries are created for just a part
of prefixes instead of all the prefixes [1][7]. Afanasyev et
al. proposed to use the DNS to resolve the name whose
entry did not exist in the FIBs of routers [1]. When the
prefix entry of arriving Interest did not exist in the FIB of
a router, the router returned the negative acknowledgement to
the subscriber, and the subscriber obtained the prefix which
existed in the same domain and whose entry existed in router
FIBs by the DNS. Moreover, Detti et al. also proposed the look
and cache approach, i.e., routers obtain the routing information
from the NRS (name routing system) server and cache the
obtained routing information at the FIBs of routers [7]. In
this approach, although the size of FIBs is reduced, the name
look-up procedure is required.

In the second approach, i.e., routing aggregation, FIBs are
set so that all Interests traverse the identical router called NAC
(name collector) [18]. Because Interests transmitted on the
tree topology, in which the NAC is the root node, toward the
NAC, the required size of FIBs at routers is reduced. However,
the path stretch, i.e., the hop length of Interest transmission,
increases. In the third approach, i.e., flooding, Interests are
broadcast to all output faces at routers without looking up the
FIBs [3][5]. Ascigil et al. proposed to broadcast the Interest
at routers, and the adjacent routers caching the prefix returned
the router information to the requesting router [3]. Chiocchetti
et al. proposed to transfer Interests for non-popular content
items, whereas broadcast Interests for popular content items
without using FIBs [5]. Because copies of popular content
are likely cached at many routers, so Interests will arrive
at routers having the requested content with high probability
by broadcasting Interests. However, Interests are transferred
redundantly, so the network links might be overloaded.

Finally, in the fourth approach, i.e., bloom filter, routers
judge whether transfer each arriving Interest or not to each
output face using the bloom filter provided at each output face
[17][16]. Using the bloom filter, routers can make the decision

of Interest transfer by using a small size memory with a limited
number of memory accesses. However, we cannot avoid a false
positive, i.e., falsely transferring Interests to incorrect output
faces, and the network load will increase due to redundant
Interest transmission.

ITI. MEASURING LOCATION OF WEB OBJECTS

Alexa provides the list of the top 500 webpages with the
largest request count in each of the 16 categories: adult, arts,
business, computers, games, health, home, kids&teens,
news, recreation, reference, regional, science, shopping,
society, and sports [2]. We selected 8,000 webpages
consisting of the most popular 500 webpages in each of the
16 categories as the measurement targets. When accessing
webpages, some web browsers, e.g., Google chrome, have
a function to export the HTTP archive (HAR) files which
include various communication properties, e.g., the host
URL from which each object is downloaded, the URL of
each object, the size of each object, and the delay caused in
obtaining each object, as JavaScript Object Notation (JSON)
format [4][9]. We continuously and automatically accessed
the 8,000 webpages from a client terminal at the Fukuoka
University in November 2017 by using the headless Chrome,
i.e., Chrome without using GUI. We successfully obtained the
HAR files from 7,604 webpages among the 8,000 webpages
accessed”. The cumulative number of web objects® included
in the 7,604 webpages was 679,380, and we extracted URLSs
of these objects from the HAR files.

Because CDN has been widely used in the Internet, many
web objects were delivered from cache servers instead of
origin servers. We want to focus on the location of only
originals of content, so we exclude URLs which were deliv-
ered from cache servers. When using the CDN, DNS query
was redirected the DNS server of CDN providers, so DNS
record included the character string of CNAME. Therefore,
for each extracted URL, we obtained the DNS record by using
dig command, and we obtained 20,921 URLs from 679,380
URLs excluding the URLs whose DNS records include the
character string of CNAME. Moreover, we further excluded
URLSs including the five keywords related to CDN: cdn, edge,
akam, cloudfront, and cloudflare. 2,374 URLs include any
of these keywords, so we had 18,547 URLs for which web
objects were delivered from origin servers.

We obtained the country name, city name, and coordinates
of the host from which each of the 18,547 objects was
transmitted by using the GeolP API provided by MaxMind
[14]. We classified the 18,547 objects based on the country
where the original of each object existed, and Table I shows the
number of URLs classified into each of the top 10 countries.
We confirmed that originals of 18,547 web objects were
provided from 71 countries, and those of about 64% web

2For various reasons, HAR files cannot be obtained for 396 webpages.
For example, timed out error occurred when obtaining some objects, or IP
addresses cannot be resolved for some URLs of objects.

3Web object is a unit of data embedded in a webpage, and each webpage
consists of about 50 to 100 web objects on average.

objects were provided from USA. In the following evaluation,
we used the coordinates and URLSs of these 11,908 web objects
whose originals existed in USA.

In the numerical evaluation, we used the topology of In-
ternet 2 which is the backbone network in USA aiming for
research and education [11]. We used 12 nodes providing
the layer 3 service, and Fig. 1 shows the topology among
the selected 12 nodes. Let O,,, denote the node at which the
original of web object m is placed among the 12 nodes of the
Internet 2 topology. We set O,,, to the node to which the Eu-
clidean distance from the coordinate of host delivering object
m was minimum among the 12 nodes. Table II summarizes
the number of web objects allocated to each of the 12 nodes
among the 11,908 objects, and we confirmed that many web
objects were provided at the west coast and the east coast as
well as the central location of USA, i.e., Kansas City.

TABLE 1
NUMBER OF URLS IN EACH OF TOP 10 COUNTRIES

Country URL count Country URL count

United States 11,908 Czech Republic 237

Germany 477 France 228

Korea 322 Hong Kong 222

United Kingdom 261 Australia 202

Singapore 241 Ireland 128

Fig. 1. Layer 3 node topology of Internet2

TABLE II
NUMBER OF WEB OBJECTS WHOSE ORIGINALS ARE ALLOCATED TO EACH
NODE
Node City Object count
1 Seattle 1,267
2 Sunnyvale 1,997
3 Los Angeles 623
4 Salt Lake City 602
5 Kansas City 3,050
6 Dallas 376
7 Houston 265
8 Chicago 439
9 Cleveland 237
10 Atlanta 322
11 Washington DC 1,611
12 New York 1,119

IV. AGGREGATING FIB ENTRIES USING LONGEST PREFIX
MATCHING

In this section, we propose an algorithm to aggregate the
FIB entries of NDN routers using the longest prefix matching.

A. Generating Components of URLs

The longest prefix matching is used in IP routers to ef-
ficiently reduce the FIB size. FIB entries of IP routers are
allowed to take any value, i.e., zero or unity, in the lowest bits
of any length, and a packet arriving at an IP router is forwarded
to the output port where the number of the highest bits at
which the FIB entry and destination IP address of the arriving
packet is the maximum. To apply the longest prefix matching
to NDN routers, two approaches will be possible: (i) unit of
characters of URLs and (ii) unit of components of URLs. We
define the components of URL as the character string separated
by period in URL. For example, the URL of “www.fukuoka-
u.ac.jp” consists of four components, “www”, “fukuoka-u”,
“ac”, and “jp”. The prefix of NDN is the concatenation of
components in the reverse order, i.e., “jp/ac/fukuoka-u/www”.
Therefore, the first component of URL is the TLD (top level
domain), and the second component of URL is the SLD
(second level domain).

B. Aggregation Algorithm of FIB Entries

Initially, at each node n, FIB entries were created for all
the 11,908 objects excluding objects whose originals were
allocated at note n. The proposed aggregation algorithm of
FIB entries can be executed at each node independently, so
we focus on one node and describe all variables without node
index n. Let P(z) denote the prefix of entry z in the FIB, and
let p(x, s) denote the first s components of P(x). Moreover,
we define F'(x) as the output face of FIB entry = which is set
by a routing algorithm, e.g., Dijkstra’s minimum cost route.
The routing algorithm of Interests is out of the scope of this
manuscript, and we assume that F'(x) is given. We also define
M as the set of FIB entries which have not been checked yet.
Now, we describe the algorithm (Algorithm 1) aggregating FIB
entries in the forward direction.

Algorithm 1 Aggregating FIB entries in forward direction
: Initializes s = 1 and M to all FIB entries
while s < C do
while M # ¢ do
Randomly selects one entry = from M
Calculates Y (z, s, 0), set of FIB entry y satisfying
p(y,s) = p(x,s) with F(y) = o among y € M, for
each possible o
6: Aggregates all entries of Y (z, s, 0*) to {p(z, s), 0* }
where number of entries of Y (z, s, 0*) is maximum
among those of Y (z, s, 0) of any output face o
7: Updates M to M \ {y € Y(z,s,0), Vz}
8: end while
9: Increments s
10: end while

AN

Firstly, this algorithm aggregates the FIB entries on the
TLDs, and it aggregates the FIB entries on the SLDs in the
next step. This procedure is repeated until the aggregation is
completed on all the component location, 1, 2, ---, C' — 1,
where C' is the maximum number of components in each URL.
In the 11,908 web objects, C' was six. We also propose to
aggregate the FIB entries in the reverse direction, i.e., from
the tail C to the top, and we use the same algorithm shown
above with setting s = C' — 1 in step 1, and decrementing s
and moving to step 2 when s is greater than unity.

C. Numerical Evaluation

We applied the proposed aggregation algorithm of FIB en-
tries to the measured original location of 11,908 web objects.
Let EL . E24J, and EZY7 denote the number of FIB entries at

node n without aggregation, with aggregation in the forward
direction, and with aggregation in the reverse direction, re-

spectively. Table III shows E! . EZ.f, and E2;7 for each
node n as well as AEO‘fn , the difference between E;‘f;f

and EZ57, ie., EXf — EZL7. Even in the measured original
location of web objects, the FIB size can be reduced to about
20% to 50% using the proposed aggregation algorithm. The
difference of the aggregation effect in both the direction was
small. However, the required calculation time of aggregating
FIB entries in the forward direction was much smaller than
that of aggregating FIB entries in the reverse direction, so the
aggregation in the forwarding direction was better than the
aggregating in the reverse direction.

Figure 2(a) plots the number of FIB entries at each ag-
gregation stage, i.e., aggregation point of URL components,
at each of the 12 nodes when aggregating the FIB entries in
the forward direction. Figure 2(b) also shows the same results
when aggregating the FIB entries in the reverse direction. We
confirmed that almost all the aggregation effect of FIB entries
was obtained when aggregating FIB entries at the first and
second components, i.e., TLD and SLD.

TABLE III
NUMBER OF FIB ENTRIES WITHOUT AGGREGATION, EZ | WITH
AGGREGATION IN FORWARD DIRECTION, E(f‘nf AND WITH AGGREGATION
IN REVERSE DIRECTION, EZ57, AND AEZ, = Ej — B2 BAsED oN

MEASURED LOCATION OF WEB OBJECTS

Node | EL, [EST | ES | AEZ,
T | 10,641 | 3,792 | 3,646 | 146
2 | 9911 | 2554 | 2533 | 21
3| 11,285 | 3,746 | 3583 | 163
4 | 11306 | 4528 | 4550 | -22
5 | 8858 | 3,043 | 3011 EY)
6 | 11,532 | 2360 | 2393 | -33
7| 11,643 | 5280 | 5207 | 82
8 | 11469 | 4567 | 4509 | 58
9 | 11,671 | 2061 | 2,083 | -22
10 | 11,586 | 4,196 | 4208 | -12
11| 10297 | 3,130 | 3,139 -9
12 | 10,789 | 1462 | 1481 | -19

5
810 1 = 5=~ 9-m
= 2 —=— 6 > 10 —
5 Node 5 o 7 - 11 =
m 4 - 8- 12 =
i 1048
(o]
8 % 4
£ &]
=} —
Z 103 i)
1 2 3 4 5
Aggregation position in components
(a) In forward direction
8" ~
= -
o ——
M
L1048
‘G
@
e}
S
= 108
5 4 3 2 1

Aggregation position in components
(b) In reverse direction

Fig. 2. Number of FIB entries at each node based on measured location of
object originals

V. DESIGNING CONTENT PLACEMENT OF CDN REDUCING
FIB S1ZES

A. Policy of Designing Content Placement of CDN

As mentioned in the previous section, almost all the aggre-
gation effect of FIB entries was obtained when aggregating
FIB entries at the first and second components, i.e., TLD and
SLD. Therefore, we focus on designing content placement
of CDN cache servers maximizing the aggregation effect of
FIB entries on just the TLD and SLD. Figure 3 shows the
complementary cumulative distribution (CCD) of web object
count with the identical TLD and identical SLD. The number
of different TLD and SLD in the 11,908 web objects was 112
and 6,494, respectively. We confirmed that quite few TLDs
and SLDs were used in URLs of many web objects, whereas
almost all TLDs and SLDs were used in URLs of just a few
web objects. Tables IV and V summarize the number of URLSs
of web objects with each of the top 10 TLDs and the top 10
SLDs, respectively. The deviation of URL count using each
TDL was more remarkable compared with that using each
SLD, and the TLD of about 70% URLs of the 11,908 web
objects was “ com”.

Now, let us consider placing each web object at one of
the 12 nodes. The identical output face is set to the prefixes
destined to the same node in FIB of each node. Therefore, we
can expect to efficiently reduce the number of FIB entries by
placing web objects with TLDs of high rank at the identical
node. As an extreme case, if we place all web objects at just
a single node, all FIB entries can be aggregated into just a
single entry. However, traffic will be concentrated on the node

with all web objects and its connected links. To alleviate the
traffic concentration, we should place web objects at all the 12
nodes as equally as possible. Therefore, we limit the maximum
number of web objects placed at one node less than or equal
to the upper limit B. B must be greater than or equal to the
number of web objects divided by the number of nodes. The
FIB size of each node after aggregation will depend on the
location of originals of web objects on the network topology.
However, we do not consider the location of each node on
the network topology, and we leave the FIB aggregation with
considering the node location as the future work.

1
10 1 S TID
T
o 1042 ‘l'T
R
103 ™
SLD
10-4 j
1 10 102 103 104
Number of Web objects

Fig. 3. Complementary cumulative distribution of web object count with
identical TLD and identical SLD

TABLE IV
NUMBER OF URLS WITH EACH OF TOP 10 TLDS
Rank | TLD Ny Rank | TLD | Ng
1 com 8,241 6 io 122
2 net 1,292 7 uk 115
3 org 953 8 au 75
4 edu 441 9 co 64
5 gov 181 10 ca 54
TABLE V
NUMBER OF URLS WITH EACH OF TOP 10 SLDS
Rank SLD Ny Rank SLD Ny
1 com/amgdgt 397 6 au/com 59
2 net/omtrdc 395 7 net/207 51
3 net/openx 193 8 com/gstatic 44
4 uk/co 100 9 com/netdna-ssl | 36
5 com/mktoresp | 73 10 net/fastly 36

B. Proposed Algorithm Placing Content at Nodes

Based on the policy described in Section V-A, we proposed
an algorithm placing content at nodes so that the FIB size
is further reduced. We assume that CDN cache servers are
provided at all nodes of the network. We sort the TLDs in the
descending order of the number of URLs using each TLD, and
we define D;(x) as the z-th ranked TLD. We also sort the
SLDs with each TLD in the descending order of the number
of URLs using each SLD, and we define Ds(s,y) as the y-th
ranked SLD with s as the TLD. We define M; and Mz(s) as
the number of distinct TLDs and the number of distinct SLDs
with s as the TLD.

Moreover, let U () denote the set of URLs with Dy (z) as
the TLD, and let U (s, x) denote the set of URLs with s as the
TLD and Ds(s, z) as the SLD. We define m; (x) and ma(s, z)
as the number of URLs included in U;(z) and Us(s,). Let
A,, denote the number of URLs which can be placed at node
n, and let n* denote the node which has the maximum value
of A,*. Now, we describe the algorithm (Algorithm 2) placing
content at nodes for reducing the FIB size.

Algorithm 2 Placing content at nodes for reducing FIB size

1: Initializes x = 1 and A,, = B for all n
2: while x < M; do
3: Finds n*

4 if ny(z) < A,- then
5: Places U (x) at node n* and updates A+ to A, —
ny ()

6 else

7: Initializes y = 1

8 while y < M5(D1(z)) do

9 while 1y (D1 (z),y) > A, do

10: Places Uz(D;(z),y) at node n* and updates
An* to An* - 7’L2(D1(1’),y)

11: end while

12: Increments y and finds n*

13: end while

14: end if

15: Increments x
16: end while

In the descending order of mi(x), we allocate U;(z) to
node n* if ni(z) < A,-. If ny(z) A,~, we divide U;(z)
into Us(D1(2),y), y =1,2,---, My(D;(x)), and we allocate
Us(D;(x),y) to node n* for each y. As a result, we can
expect to improve the possibility of aggregating FIB entries at
each node while satisfying u,, < B where u,, is the number
of URLs placed at node n.

C. Numerical Evaluation

We set B, the upper bound of object count placed at one
node, to W/N % 1.1 = 1,091 where W is the number of
web objects, i.e., 11,908, and N is the number of nodes, i.e.,
12. Table VI shows the number of TLDs, SLDs, and URLs
assigned to each node. As shown in Tab. IV, the TDL of about
70% URLs was “com”, and these 8,241 URLSs were assigned
to nodes 1, 2, ---, 8 in the unit of SLDs. Moreover, 1,292
URLs with “net’as the SLD were assigned to nodes 9 and
10. At node 11, all URLSs with “org”as the TLD were assigned.
From these results, we confirmed that the proposed algorithm
allocated URLs with the identical TLD or SLD to the same
node with the constraint u,, < B.

Next, we applied Algorithm 1 described in Section IV-B
to the placement of web objects obtained by Algorithm 2.
Table VII summarizes Eé,n, the number of FIB entries without

41f there are multiple nodes having the maximum A,,, we randomly selects
one of them as n*.

aggregation, E f , the number of FIB entries with aggregation
in the forward dlrectlon E4 4, g " the number of FIB entries with
Ep,

, and R, ,, the reduction

aggregation in the reverse direction, AE;{‘n = E;;lf —
R, ¢, the reduction ratio of EA’f

ratio of E ’T , based on the locatlon of web objects designed
by the proposed method. We define R, ; and R, , as the
reduction ratio of the FIB entry count obtained by designing
the object location by the proposed algorithm compared with
that obtained by the measured location of web objects, and
they are given by R, ; = (E:f — E;";lf)/E;f;Lf and R, , =
(Baw — Eg) /B

AE », Was larger than AEO n» and aggregating FIB entries
in the forward direction was better than that in the revere
direction when designing objects location by the proposed
method. As shown in Tab. II, the number of web objects placed
at node 5 was much larger than those at the other nodes in
the measured location of web objects. whereas the number of
objects allocated at node 5 was almost equal to those at the
other nodes after placing the objects by the proposed method.
Therefore, EO 50 the initial number of FIB entries at node
5 in the measured allocation of objects, was much smaller
than Ed 5. that in the proposed allocation, so the number of
FIB entries at node 5 after the aggregation in the proposed
allocation was larger than that in the measured allocation.
However, at all the other nodes, the number of FIB entries
was reduced by about 20% to about 90% by designing the
object location by the proposed method. The average FIB size
at each node after the entry aggregation was 3,394.0 in the
measured location of web objects, whereas it was 1,848.4 in
the location of web objects designed by the proposed method.
Using the proposed design method of location of web objects,
we can reduce the FIB size by about 45%.

TABLE VI
NUMBER OF TLDS, SLDS, AND URLS ASSIGNED TO EACH NODE

Node | #TLD | #SLD | #URL || Node | #TLD | #SLD | #URL
1 0 65 1,090 7 0 1,091 1,091
2 0 315 1,090 8 35 608 744
3 0 486 1,090 9 0 145 1,091
4 0 545 1,090 10 38 198 744
5 0 630 1,091 11 1 0 953
6 0 1,091 1,091 12 36 0 743

VI. CONCLUSION

In this paper, we firstly proposed an algorithm aggregating
FIB entries in the unit of URL component in the forward
and reverse direction. Through the numerical evaluation of
the actual location of web objects, we confirmed that almost
all the aggregation effect of FIB entries can be obtained by
aggregating at the TLD and the SLD. Therefore, we also
proposed an algorithm to allocate web objects to CDN cache
servers so that the URLs with the identical TLD or SLD at
the same node to effectively improve the aggregation effect of
FIB entries. Through the numerical evaluation, we also showed
that the FIB size can be reduced by about 45% by using the
proposed allocation method of web objects.

TABLE VII
NUMBER OF FIB ENTRIES WITHOUT AGGREGATION, EI , WITH
AGGREGATION IN FORWARD DIRECTION, E ’f , WITH AGGREGATION IN
REVERSE DIRECTION Ed Tf AEA = EA f Ed n s
OF Ed s Ry, 5, AND REDUCTION RATIO OF E e " Rn ,~» BASED ON
LOCATION OF WEB OBJECTS DESIGNED BY PROPOSED METHOD

REDUCTION RATIO

Node | EL [ENT [EST AE} | Ruys | Bor
1 10,818 | 1,521 | 1,521 0.599 | 0.583
2 10,818 | 1,330 | 1,330 0 0.479 | 0.475
3 10,818 | 2,326 | 2,273 53 0.379 | 0.366
4 10,818 | 3,608 | 2,822 786 0.203 0.38
5 10,817 | 3,710 | 3,367 343 -0.219 | -0.118
6 10,817 | 1,401 | 1,348 53 0.406 | 0.437
7 10,817 | 3,249 | 2,906 343 0.386 | 0.442
8 11,164 | 2,291 | 2,238 53 0.498 | 0.504
9 10,817 112 112 0 0.946 | 0.946
10 11,164 | 1,062 | 1,062 0 0.747 | 0.748
11 10,955 | 1,297 | 1,244 53 0.586 | 0.604
12 11,165 | 274 221 53 0.813 | 0.851

ACKNOWLEDGEMENTS

This work was partly supported by ROIS NII Open Collab-
orative Research 2019-FA(02 and KDDI Foundation Research
Grant Program 190051.

REFERENCES

[1] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, SNAMP: Secure
Namespace Mapping to Scale NDN Forwarding, IEEE Global Internet
Symposium 2015.

[2] Alexa webpage, https://www.alexa.com/siteinfo

[3] O. Ascigil, S. Rene, I. Psaras, and G. Pavlou, On-Demand Routing for
Scalable Name-Based Forwarding, ACM ICN 2018.

[4] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, Understanding Website
Complexity: Measurements, Metrics, and Implications, ACM IMC 2011.

[51 R. Chiocchetti, D. Rossi, and G. Carofiglio, Exploit the Known or
Explore the Unknown? Hamlet-Like Doubts in ICN, ACM ICN 2012.

[6] J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, A Survey on Content-
Oriented Networking for Efficient Content Delivery, IEEE Commun.
Mag., vol.49, no.3, pp.121-127, Mar. 2011.

[71 A. Detti, M. Pomposinim N. Blefari-Melazzi, and S. Salsano, Supporting
the Web with an information centric network that routes by name,
Elsevier Computer Networks, Vol. 56, No. 17, pp. 3705-3722, Nov.
2012.

[8] M. Gritter and D. R. Cheriton, An architecture for content routing
support in the Internet, USENIX USITS 2001.

[9] Software is hard, http://www.softwareishard.com/blog/har-viewer/

[10] A.Hoque, et al., NLSR: Named-data Link State Routing Protocol, ACM
ICN 2013.

[11] Internet 2, https://www.internet2.edu

[12] V. Jacobson, et al., Networking Named Content, ACM CoNEXT 2009.

[13] T. Koponen, M. Chawla, B. Chun, A. Ermolinskiy, K. H. Kim, S.

Shenker, and I. Stoica, A data-oriented (and beyond) network archi-

tecture, ACM SIGCOMM 2007.

MaxMind, GeolP Downloadable Databases,

https://dev.maxmind.com/geoip/legacy/downloadable/.

E. Nygren, R. K. Sitaraman, and J. Sun, The Akamai Network: A

Platform for High-Performance Internet Applications, ACM SIGOPS

2010.

A. Rodrigues, P. Steenkiste, A. Aguiar, Analysis and Improvement of

Name-based Packet Forwarding over Flat ID Network Architectures,

ACM ICN 2018.

K. V. Katsaros, W. K. Chai, and G. Pavlou, Bloom Filter based Inter-

domain Name Resolution: A Feasibility Study, ACM ICN 2015.

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

T. Schmidt, S. Wolke, N. Berg, and M. Wahlisch, Let s Collect
Names: How PANINI Limits FIB Tables in Name Based Routing, IFIP
Networking 2016.

W. So, A. Narayana, and D. Oran, Named data networking on a router:
Fast and DoS-resistant forwarding with hash tables, ACM/IEEE ANCS
2013.

G. Xylomenos, et al., A Survey of Information-Centric Networking
Research, IEEE Communications Survey and Tutorials, Vol. 16, No.
2, pp-1024-1049, 2014.

L. Zhang, et al., Named Data Networking (NDN) Project, Technical
Report NDN-0001, Oct. 2010.

