コンテンツ再配置によるICNルータのFIB集約

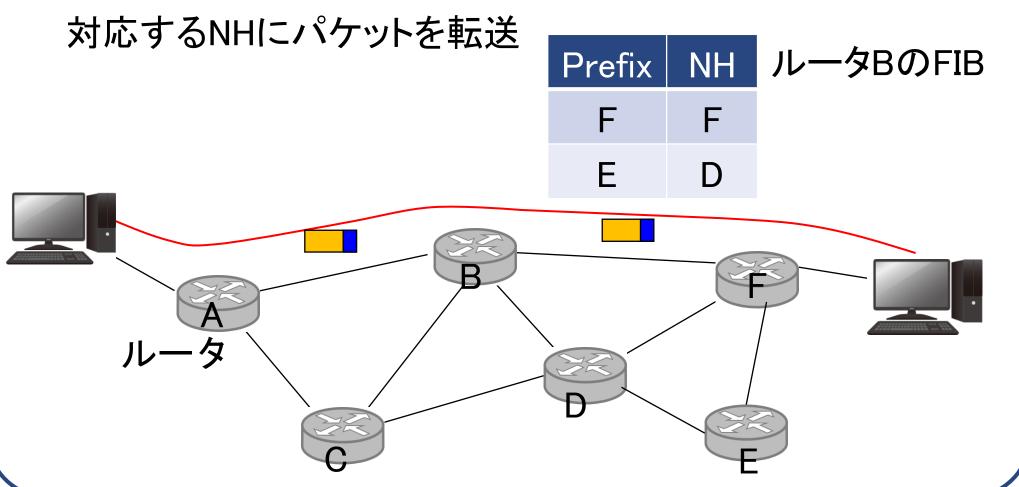
1. 研究背景と本研究の目的

■ 情報指向ネットワーク ICN (information-centric networking) 【情報中心の通信】

www.ritsumei.ac.jp

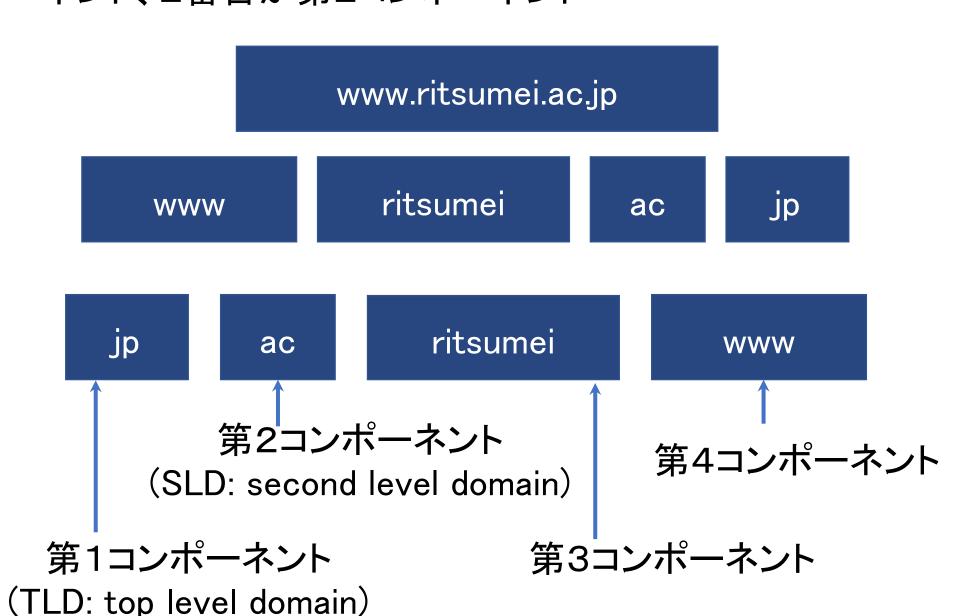
■ ICNの問題点

ネットワークの規模が大規模化 ↓ ホストの数とコンテンツの数が増大 ↓


ルータの転送テーブル(FIB: forward information base) のサイズが増大

FIBの必要メモリと検索時間が増大

【本研究の目的】似た名前のコンテンツを同じ場所に再配置することで、ICN FIBの集約効果を向上させる技術を確立


2. FIBとは

- 各ルータの、PrefixとNH (Next Hop)の対応表
- ICNではコンテンツの名前がPrefix
- ルータは到着各パケットに対し、FIBを参照し、記載Prefixに

3. コンポーネントについて

データの名前(URL)を「.」で区切った時の一番後ろが第1コンポーネント、2番目が第2コンポーネント

4. コンテンツの再配置方法

- FIBのエントリ集約効果を向上 ⇒ 第1・2コンポーネントが同一のドメインに対する各ノード のNHを同一にしたい ⇒ TLDやSLDが同じドメインのオブジ ェクトをできるだけ同一ノードに配置 ⇒ TLDやSLDを各ノー ドに割当
- 負荷の集中を避けるため、全ノードにできるだけ均等にオブジェクトを配置 ⇒ 各ノードに上限値以下の数のオブジェクトを配置

5. FIBエントリ集約方法

■ 例えば下図のFIBにおいて、第一コンポーネントと第二コンポーネントのcom/abcが一致しており、NHが一致している2 エントリを集約 ⇒ このような集約処理を反復

Prefix	NH
com/abc/xy	1
com/abc/xyz	1
com/abc/zzz	2
jp/nm/pq	3


Prefix	NH	
com/abc/*	1	
com/abc/zzz	2	
jp/nm/pq	3	

集約前 一

集約後

6. エントリ集約効果

測定で得られたオブジェクト配置(オリジナル)状態と、提案方式でオブジェクトを再配置した状態の各々に対し、FIBエントリ集約アルゴリズムを適用

- FIBエントリ数を3割~9割程度、削減
- オリジナル配置のノード5では多数のオブジェクトが配置されているが、提案方式により割当数が大幅に減少するため提案方式によりFIBサイズは微増

	集約前	オリジナル配置		提案方式による配置	
		短順集約	長順集約	短順集約	長順集約
	10,915.7	3,394.0	3,361.9	1,848.4	1,703.7

■ 提案方式によりFIBのエントリ数を約45%削減