
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

［依頼講演］遅延キャッシング効果の抑制を目的とした集約バーストスコ
アによるキャッシュ置換方式

フェリファリアント† 上山 憲昭††

† 福岡大学大学院 工学研究科 電子情報工学専攻 〒 814–0180 福岡市城南区七隈 8–19–1

†† 立命館大学 情報理工学部 〒 525–8577 滋賀県草津市野路東 1–1–1

E-mail: †td196502@cis.fukuoka.ac.jp, ††kamiaki@fc.ritsumei.ac.jp

あらまし コンテンツ配信ネットワーク (CDN)、プロキシ、またはゲートウェイなどのオンラインキャッシュ システムは，要求

データがキャッシュに存在しないとき (キャッシュミス)は，コンテンツのオリジナルを保有するサーバ (オリジンサーバ)から要

求されたデータを取得し，キャッシュした後，要求ユーザに送信する．そのためオリジンサーバからデータを取得する前に，同じ

データに対し複数の要求が発声した場合，これらもキャッシュミスとなるが，従来のキャッシュヒット率の近似式やシミュレーショ

ン評価では，後続する要求はキャッシュヒットしたと見なされる結果，ヒット率が高く見積もられる結果となる．本現象を本稿で

は Delayed caching(遅延キャッシング)効果と呼ぶ．本稿では，キャッシュサーバやゲートウェイでの遅延キャッシングの影響を評

価し，オンラインキャッシングシステムの遅延キャッシングキャッシュの影響を抑制するキャッシュ方式を提案する．

キーワード オンラインキャッシングシステム，遅延キャッシング，LRU，ヒット率低下

[Invited Lecture] Cache replacing method using burst score aggregation

to suppress delayed caching effects

Feri FAHRIANTO† and Noriaki KAMIYAMA††

† Graduate School of Engineering, Fukuoka University

8–19–1, Nanakuma, Jounan, Fukuoka 814–0180

†† College of Information Science and Engineering, Ritsumeikan University

1–1–1 Nojihigashi, Kusatsu, Shiga 525–0058

E-mail: †td196502@cis.fukuoka.ac.jp, ††kamiaki@fc.ritsumei.ac.jp

Abstract An online-caching system such as Content Delivery Network (CDN), Proxy, or Gateway, uses a caching

method to enhance network connectivity. It can store temporary data packets from an original content producer by

utilizing the caching system. In order to receive the requested data content, the client transmits a request packet

to the intermediate caching server or gateway. The different throughput between the request packet from the client

and the data packet from the original server, in addition to the cache capacity size, seem to have an impact on the

hit-ratio degradation defined as delayed caching. This phenomenon occurs when the average response time of the

original server’s data packet is slower than the average request time of the client’s request packet. Therefore, the

paper investigates the consequences of delayed caching in the caching server or gateway and proposes a suppressing

method in the cache replacement algorithm in the online-caching system. We clarify our finding with simulation with

different values of request skewness (α) representing the request content popularity that follows Zipf distribution,

against the arrival request time and original server response time.

Key words Online-caching system, Delayed caching, LRU, Hit-ratio decline

1. Introduction

An online-caching system such as Content Delivery Net-

work (CDN) or proxy server promotes a caching system to

improve network performance so the user can experience a

low latency connection. Moreover, the issue of online content

caching is a critical problem studied in computer-networking

systems. The conventional objective of caching is to mini-

— 1 —
- 64 -

IEICE Technical Report
NS2022-91(2022-10)

信学技報一般社団法人　電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

This article is a technical report without peer review, and its polished and/or extended version may be published elsewhere.
　　　 Copyright ©2022 by IEICE

mize the cache misses or the total cost of data retrievals. An

exquisite online caching algorithm should provide a lower

average content access latency, resulting in a better user ex-

perience.

Cache replacement algorithms play a central role in the

design of any caching component. Cache replacement algo-

rithms usually maximize the cache hit ratio by attempting

to cache the data items most likely to be referenced in the

future. Since the future data reference pattern is typically

difficult to predict, a common approach is obtained from

the past by caching the data items which were referenced

most frequently. This approach is implemented by, e.g., the

LRU cache replacement algorithm. However, maximizing the

cache hit ratio alone does not guarantee the best client re-

sponse time in the online environment. In addition to max-

imizing the cache hit ratio, a cache replacement algorithm

for contents should also minimize the cost of cache misses,

i.e., the delays caused by fetching documents not found in

the cache. Clearly, the content that took a long time to re-

trieve and, more often, should be preferentially retained in

the cache.

This article proposes the Burst Score Aggregation (BSA)

that represents the high occurrence degree during a delay

in obtaining the content so that it can suppress the effect

of delayed caching. The metric is used to modify the cache

replacement algorithm in the caching system, which can pre-

vent hit-ratio degradation because of cache misses due to de-

layed caching. We use a computer simulation to clarify our

method with request distribution that follows the Zipf dis-

tribution with skewness parameter (α). The Organization

of this paper consists of six sections: introduction, related

work, delayed caching in the online-caching system, delayed

caching suppressing method, numerical evaluation, and con-

clusion.

2. Related work

Investigation of the effect of delayed caching has been pub-

lished in the literature [1]. Therefore, implementing a caching

system must also consider the delayed caching problem. We

presume that the fundamental problem arises from an imbal-

ance in throughput and latency between the requester and

the content provider. If the requester throughput is poor

relative to the content provider, only a few requests may be

able to arrive during a fetching interval. If the requester’s

throughput is greater than the provider’s, then more requests

come during the fetching period causing more cache misses.

Several researchers have sought a caching replacement ap-

proach to address the issue of delayed caching. The authors

propose the caching replacement technique that enables a re-

duction of the effect of delayed caching so that it can prevent

the cache hit ratio degradation.

Atre et al. in [3] calculated each unique content aggrega-

tion delay and its subsequent turn request or future request

as key parameters to the cache replacement algorithm. Even

though the technique is considered both offline and online

file caching, it is suited only for a system with a significant

buffer to store the incoming request before it is requested

in the cache. Moreover, calculating aggregation delay is a

relatively complex computation that requires a longer cal-

culation time which is not suited for a router that operates

with high data throughput and less memory buffer. Another

author, Chang et al. in [4], considered passing a particular

content directly to the original server that has a specific delay

metric instead of storing it in the caching system. The metric

is bound to a specific threshold of delay and file size to resist

the overall hit-ratio decline. As an alternative for suppress-

ing the delay caching problem, we proposed a replacement

algorithm that considers the burstiness of content. The BSA

level is used as a metric for content eviction in the cache.

Additionally, a database is provided so the caching server

can periodically update and track the content’s BSA.

3. Delayed caching in online-caching sys-

tem

This section describes the effect of delayed caching in an

online-caching system. Figure 1 depicts a typical cache with

a delay caching that occurred in the caching system. When-

ever a client requests content but the content absences in the

cache, the proxy or gateway forwards this request packet to

the original content provider to fetch the data content. The

retrieval process takes some time, known as the producer re-

sponse time (tfetch). And the average arrival time between

the client’s requested packets, known as tarrival. If a new

request for the same data content arrives at the cache before

tfetch is completed, this new request suffers from a cache

miss in the cache. Then, if the condition repeatedly occurs

in the online-caching server, it causes a significant hit ratio

(a) Cache miss in tfetch ≃ 2× tarrival

(b) Cache miss in tfetch ≃ 4× tarrival

Fig. 1: Cache miss because of delayed caching in different

length of tfetch relative to tarrival

— 2 —
- 65 -

(a) In case of tfetch ≃ 100× tarrival (b) In case of tfetch ≃ 1000× tarrival

Fig. 2: The hit-ratio (β) decline in LRU in different value of tfetch relative to tarrival.

decline.

The hit ratio is defined as the number of requests satisfied

by the cache divided by the number of all requests that ar-

rived at the cache. The higher the hit ratio is or the lower

the miss ratio is, the more requests are satisfied by the cache.

The hit-ratio degradation that occurs due to caching delay

is depicted in Figure 1. Figure 1(a) shows the case when

tfetch is two times of tarrival, whereas Figure 1(b) shows the

case when tfetch is four times of tarrival. In the first case,

just eleven requests are satisfied by the cache, whereas seven

requests are satisfied by the cache in the second case. The

longer tfetch relative to tarrival can cause more cache miss.

As a result, the hit ratio is declining in the online-caching

server.

Figure 2 shows the hit degradation that exist in online-

caching server that we have presented in [1]. The hit degrada-

tion is subjected to the incoming request that obeys Zipf dis-

tribution representing the content popularity and the com-

parison between tfetch and tarrival. It shows that the smaller

α creates smaller gap compare to higher α in every differ-

ent case of tfetch relative to tarrival. Furthermore, ∆β, the

gap between idealized LRU and delayed caching LRU, mono-

tonically increased as tfetch increased. The average of ∆β

were about 15% and 30% when tfetch ≃ 10 × tarrival, and

tfetch ≃ 100× tarrival respectively. We have found that the

more popular content was higher likely to experience delayed

caching. This is because more requests for popular content

were more likely to be requested during the tfetch interval,

so they experienced cache miss in the cache.

4. Delayed caching suppressing method

A specific strategy to suppress the effect of delayed caching

is developed. The technique relies on the burstiness of con-

tents as a key parameter to prioritize the residency in the

cache system. The procedure of the proposed method can

be generally described in Figure 3. First, we need to capture

L number of requests during fetching time tfetch. Next, a

burst score is calculated and aggregated from the L num-

ber content’s request. A database consisting of records from

all the BSA of unique contents is built. Finally, the cache

implements a cache replacement algorithm that evicts the

content with the lowest BSA whenever the capacity is full

after receiving content from the producer. Therefore, the

parameter burst score and BSA are the essential keys in this

suppressing method.

Fig. 3: Architecture of BSA based cache replacement algo-

rithm

4. 1 Burst score

We have shown that the popular content has a higher prob-

able experiencing delayed caching in the previous section.

Under certain conditions, a particular content occurrence is

dominant at a specific sampling time compared to other sam-

pling times. This situation is defined as a burst period. The

burst score of the particular content can be measured by

comparing the occurrences of that content between sampling

time and elapsed time. Hoonlor et al. in [5] introduced the

burst score of a particular content x for the specific sampling

period, which is similar to tfetch in an online-caching server,

which can be defined by

Burst(x, tfetch) = (
Etfetch

E
− 1

T
), (1)

— 3 —
- 66 -

where Etfetch is the total number of occurrences of event

x ∈ {c1, .., cN} in sampling time interval of tfetch and E is

the total number of occurrences of x ∈ {c1, .., cN} in total

elapse time T . The set of {c1, .., cN} express the number of

N total unique contents.

As for example, lets consider five sampling periods namely

tfetch1, tfetch2, tfetch3, tfetch4, and tfetch5 respectively, with

three different contents c1, c2, and c3 as seen in Figure 4.

The average number of content in each sampling time is five

contents. This value can be obtained by dividing tfetch with

tarrival. Using formula 1, it is obtained that the content’s

burst score is at maximum when the content appears for

the first time during the sampling period. Afterwards, it is

about in the range between zero and the maximum value,

or always in positive value. On the other hand, the burst

score becomes negative if the content does not appear at any

rate in the sampling period. Furthermore, the burst score

produces identical scores for contents that have a different

number of occurrences within the sampling period and are

present for the first time. As a result, the burst score can

not describe the magnitude of occurrence of a specific con-

tent compared to others. It is a metric to identify a particular

content’s occurrence in the sampling period relative to the

total of previous occurrences.

We could interpret the burstiness of a certain content when

we track the burst score from the beginning sampling period

up to the latest. Therefore, we introduce burst score ag-

gregation (BSA) to measure the burst level of content by

accumulating from previous burst scores up to elapse time.

The BSA of the specific content can be defined by

BSA(x, tfetch) =

M∑
i=1

Burst(x, tfetch), (2)

where M is the total number of tfetch sequence up to elapse

Fig. 4: Burst score and Burst score aggregation (BSA) with

five sampling period, tfetch, and three unique contents.

time T . Thus, M is ratio between T and tfetch.

BSA necessities the accumulation of the previous burst

score up to elapse time to interpret the trend of specific con-

tent being frequently requested or not. If the frequency of

specific content gradually increases over time and has never

been absent in all sampling period sequences, then the BSA

level will reach the maximum value. Using previous exam-

ple as shown in Figure 4, BSA of c1 has the highest value at

tfetch5 because c1 consistently presents in all sampling period

during the elapse time. Moreover, the number of occurrences

is also gradually increasing. On the contrary, even though c2

has the same BSA level at the beginning of sampling time,

it remains stagnant because its frequency is in a declining

trend.

On the other hand, c3 becomes the second highest at

tfetch5 even though it has a negative burst score in the begin-

ning, but it is compensated with the next positive frequency

trends. As a result, the BSA is significantly improved at

tfetch5. Therefore, the high BSA means that the content has

a high probable being dominantly requested in the future,

so this parameter can be used to determine which content

(a) When α=1.0

(b) When α=1.5

Fig. 5: Burst score distribution against skewness parameter

(α) of Zipf distribution for 1000 unique contents (N)

— 4 —
- 67 -

should be prioritized in the cache.

To understand the characteristic of BSA against request

distribution, Figure 5 shows the burst score distribution of

content that follows the Zipf distribution. Two skewness pa-

rameters of Zipf distribution for α equal to 1.0 and 1.5 are

taken as a comparison. The total elapsed time is about 10

seconds with a sampling interval, tfetch, of about 10 ms.

From the figure 5, we know that popular contents have a

more positive burst score than unpopular content. As the

value of α increases, the number of positive burst scores is

concentrated on the most popular content. According to Zipf

distribution characteristics, the most popular content is more

likely to appear more frequently. Thus, it is always found in

every sequence of the sampling period.

4. 2 Cache replacement algorithm

As we have mentioned earlier, the cache replacement algo-

rithm is essential in optimizing the cache hit ratio in the

caching system. We know that a cache miss in delayed

caching is mainly caused by the massive arrival of the same

particular content in the unfinished fetching process. There-

fore, modifying the cache replacement algorithm can effec-

tively prevent the hit-ratio decline. If a caching system prior-

itizes content based on its burst score aggregation, i.e., con-

tent with the lowest burst score aggregations will be evicted

from the cache system. The most requested content in every

sampling period will always remain in the cache. To imple-

ment this idea, the CDN server or proxy must first construct

a database that records the BSA of each unique content. Sec-

ond, the cache replacement policy of caching system evicts

content with the lowest content burst score aggregation, as

seen in Figure 5.

Algorithm 1: Burst score database.

1: ts← Average content provider response time;

2: T ← Elapse time;

3: Burst database ← Burst(x, tfetch)=0 ∀x ∈ {c1, .., cN};
4: while T mod tfetch = 0 do

5: Count interest Burst(x, tfetch) ∀x ∈ {c1, .., cN};
6: Aggregate burst score =

Burst(x, tfetch)[previous]+Burst(x, ts)[current]

∀x ∈ {c1, .., cN} and store in Burst database;

7: end while

Algorithm 1 shows the pseudo-code in calculating the burst

scores for all available contents. Initially, the online-caching

server set the value of tfetch with the average producer re-

sponse time. Afterward, the router calculates all burst scores

in every tfetch interval. The calculation result is aggregated

by accumulating the previous burst score with the current

value for all content items. Then, it is stored in the database.

Algorithm 2 describes the pseudo-code of content replace-

ment in the caching server. When it receives content from a

original content provider, it stores it in cache. However, if the

Algorithm 2: Content replacement

1: while Cache receives content do

2: if Cache size is full then

3: Evict content in cache with lowet BSA;

4: Store content in cache;

5: else

6: Store content in cache;

7: end if

8: end while

capacity of cache is oversized, the online-caching server ex-

ecutes a content replacement algorithm that removes a par-

ticular content with the lowest BSA.

5. Numerical evaluation

We evaluate and clarify our hypothesis using computer

simulation consisting of 3 parallel processes programmed by

Python 3.8. Furthermore, We compare the hit ratio perfor-

mance between the proposed method and LRU in the online-

caching server. The sampling delay, tfetch, was set to differ-

ent scenarios. Table 1 shows the metric parameters used in

the experiment.

Tab. 1: Setting values of main parameters

Paramater Value

Number of unique content items (N) 1000

Cache size 10

Request skewness (α) 0.5 - 1.5

Interval(ts) 10 ms and 100 ms

Interest rate 10000 interests/s

We collected the data from 100000 requests sent by the

requester or client. The cache hit ratios obtained by the

simulator were plotted against the request skewness, α, for

each of the three different cases, namely LRU without de-

layed caching, LRU with delayed caching, and the proposed

method as seen in Figure 6. In general, the result shows

that the proposed method enable to prevent the cache hit

ratio decline averagely 30% from LRU with delayed caching

in case of tfetch equal to 10 ms as seen in Figure 6(a), and

40% in case of tfetch equal to 100 ms as seen in Figure 6(c).

The hit ratio of the proposed method outperformed the

LRU without delayed caching, about 1% in case of tfetch

equal to 10 ms as shown in Figure 6(c)and 3% in case of

tfetch equal to 100 ms respectively as shown in Figure 6(d).

This is because the proposed method utilizes the burst scores

that are highly correlated with content popularity to evict

the content in the cache, so the order of arrival request se-

quence does not affect the eviction in the cache. In addition,

a high α indicates that a few numbers of popular content

dominate requests. The overall cache-hit ratio increases sig-

nificantly when cache capacity is merely sufficient to store

those popular contents. On the other hand, the LRU al-

gorithm caches the content in accordance with the order of

— 5 —
- 68 -

(a) When tfetch=10 ms (b) When tfetch=10 ms

(c) When tfetch=100 ms (d) When tfetch=100 ms

Fig. 6: Comparison of hit ratio between LRU without delayed caching, proposed method, and LRU

arrival request sequences, i.e., if the unpopular content is

sent between popular content, then LRU will cache it for

sure since it is the most recent. As a result, it creates more

cache misses.

6. Conclusion and Future work

The numerical evaluation shows that the BSA is effective in

preventing the hit-ratio decline because of delayed caching.

The BSA suppressing method is optimum to suppress the

effect of the delayed caching when the content request distri-

bution follows the Zipf distribution with skewness parameter

α greater than 0.9 and with a small number of unique con-

tents.

The investigation to optimize the Burst Score Aggregation

database will be deeply examined in the future. The tech-

nique to reduce calculation complexity against the increasing

number of unique contents is also considered for future works.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number

18K11283 and 21H03437, as well as the Ministry of Religious

Affairs of the Republic of Indonesia (MORA 5000 Doktor).

References

[1] F. Fahrianto and N. Kamiyama, ”Impact of Delayed

Caching on Hit-ratio of ICN Router”, IEICE 2022 General

Conference, BS-3-5, Online, Mar. 2022.

[2] P. Scheuermann, J. Shim, and R. Vingralek, ”A case for

delay-conscious caching of Web documents”, The sixth in-

ternational conference onWorld Wide Web, Elsevier Science

Publishers Ltd., 1997.

[3] N. Atre, J. Sherry, W. Wang, and D. S. Berger, ”Caching

with Delayed Hits”, In Proceedings of the Annual confer-

ence of SIGCOMM ’20, ACM, New York, NY, USA, 2020.

[4] C. Zhang, H. Tan, G. Li, Z. Han, S. H. . -C. Jiang and X.

-Y. Li, ”Online File Caching in Latency-Sensitive Systems

with Delayed Hits and Bypassing,” IEEE INFOCOM 2022

- IEEE Conference on Computer Communications, 2022.

[5] A. Sabnis and R. K. Sitaraman, ”TRAGEN: a synthetic

trace generator for realistic cache simulations,” In Proceed-

ings of the 21st ACM Internet Measurement Conference

(IMC ’21), ACM, New York, NY, USA, 2021.

[6] Sundarrajan et. al, ”Footprint descriptors: Theory and

practice of cache provisioning in a global cdn,” In Proceed-

ings of the 13th International Conference on emerging Net-

working Experiments and Technologies, pp. 55-67. 2017.

[7] B. Wissingh, C. Wood, A. Afanasyev, L. Zhang, D. Oran,

and C. Tschudin, ”Information-Centric Networking (ICN):

ContentCentric Networking (CCNx) and Named Data Net-

working (NDN) Terminology”, RFC 8793, June 2020.

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, R. L. Braynard, ”Networking Named Con-

tent,” CoNEXT 2009, Rome, December 2009.

— 6 —
- 69 -

 HistoryItem_V1
 AddMaskingTape

 範囲: 6ページから ページ 6
 マスク座標: 左下 (524.81 20.21) 右上 (548.71 43.19) ポイント

 0
 524.8101 20.2084 548.7068 43.1861

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 5ページから ページ 5
 マスク座標: 左下 (524.81 19.29) 右上 (546.87 42.27) ポイント

 0
 524.8101 19.2893 546.8687 42.267

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 4ページから ページ 4
 マスク座標: 左下 (521.13 14.69) 右上 (549.63 42.27) ポイント

 0
 521.1337 14.6937 549.626 42.267

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 3ページから ページ 3
 マスク座標: 左下 (524.81 18.37) 右上 (551.46 42.27) ポイント

 0
 524.8101 18.3702 551.4642 42.267

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 2ページから ページ 2
 マスク座標: 左下 (525.73 22.05) 右上 (544.11 45.02) ポイント

 0
 525.7292 22.0466 544.1113 45.0243

 2
 SubDoc
 2

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 1ページから ページ 1
 マスク座標: 左下 (514.70 20.21) 右上 (546.87 44.11) ポイント

 0
 514.6999 20.2084 546.8687 44.1052

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 範囲: 1ページから ページ 1
 マスク座標: 左下 (55.15 749.98) 右上 (547.79 790.42) ポイント

 0
 55.1464 749.9793 547.7877 790.42

 1
 SubDoc
 1

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 5
 6
 0
 1

 1

 HistoryItem_V1
 AddNumbers

 範囲: 全てのページ
 フォント: Times-Roman 10.5 ポイント
 オリジナル: 中央下
 オフセット: 横方向 0.00 ポイント, 縦方向 39.69 ポイント
 前置文字列: -
 後置文字列: -
 レジストレーションカラーを使用: はい

 1
 1
 -
 BC
 -
 1
 64
 TR
 1
 0
 772
 327

 1
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 10.5000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 [Doc:NumPages]
 0.0000
 39.6850

 QITE_QuiteImposingPlus3
 QI+ 3.0b
 QI+ 3
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

